

1N-61 388539

TECHNICAL NOTE

D-1092

AN INPUT ROUTINE USING ARITHMETIC STATEMENTS

FOR THE IBM 704 DIGITAL COMPUTER

By Don N. Turner and Vearl N. Huff

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON September 1961

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1092

AN INPUT ROUTINE USING ARITHMETIC STATEMENTS FOR THE IBM

704 DIGITAL COMPUTER

By Don N. Turner and Vearl N. Huff

SUMMARY

An input routine has been designed for use with FORTRAN or SAP coded programs which are to be executed on an IBM 704 digital computer. All input to be processed by the routine is punched on IBM cards as declarative statements of the arithmetic type resembling the FORTRAN language.

The routine is 850 words in length. It is capable of loading fixed- or floating-point numbers, octal numbers, and alphabetic words, and of performing simple arithmetic as indicated on input cards. Provisions have been made for rapid loading of arrays of numbers in consecutive memory locations.

INTRODUCTION

The need for a method of reading input data different from that made available by compilers such as FORTRAN has been indicated by many problems coded at the Lewis Research Center. Most compilers now in operation require that the programmer itemize each input parameter in a read-type statement somewhere in the coding of the problem. While this procedure is often adequate, additional flexibility is desirable, especially concerning the order and quantity of values that may be read as well as the language in which they are presented - such as decimal, octal, or alphabetic data.

From a study of the features deemed desirable for a flexible input routine, it was decided that such a routine should have the following capabilities:

- (1) To load decimal, octal, or alphabetic data into the machine memory where both the data and the location or destination are taken from statements on the input medium.
- (2) To provide a means of operating on data through simple arithmetic, such as conversion of units.

- (3) To accept an algebraic form of input that is independent of card format and easily understood.
- (4) To provide an effective diagnosis of any errors detected by the machine in the input statements.

The INPUT routine described herein was subsequently designed for use on an IBM 704 digital computer that utilizes cards as the input medium. The logical structure of this routine is adaptable to other machines whether they utilize cards, paper tape, magnetic tape, or typewriter input.

GENERAL DESCRIPTION

The INPUT routine is 850 words in length and is coded in the SAP language. It is constructed as a subroutine of the type described in the IBM FORTRAN II manual (International Business Machines form (28-6000)); that is, it uses the standard subroutine linkage and is loaded by the Binary Symbolic Subroutine (BSS) loader associated with FORTRAN.

The INPUT routine, as presented, has been designed for use with the MONITOR system in use on the 704 computer at the Lewis Research Center. This MONITOR is used to facilitate the handling of program decks, to keep accounting records, and to decrease the idle machine time between jobs. In the MONITOR system of operation, all input is read from logical tape 7 (a card-to-tape converter is assumed) and all output is written on logical tape 6 (an auxiliary tape-to-printer is assumed). The INPUT routine may be easily adapted for use with different monitors or other systems.

The object of the INPUT routine is to make possible the transmission of data to the computer in the form of algebraic statements, such as

TEMPERATURE = 201.7

This form resembles that of the FORTRAN language and is readily understood and easily checked for errors. The function of the INPUT routine, then, is to relate the name TEMPERATURE to a specific memory address and to place the value 201.7 in that location. To accomplish this, the following steps are performed:

- (1) Transfer control to the INPUT routine.
- (2) Check to see if data should be read at this time.
- (3) Relate the input data name to a specific memory address.

CONTENTS

SUMMARY	Page 1
INTRODUCTION	_
INTRODUCTION	1
GENERAL DESCRIPTION	2
ENTERING THE ROUTINE	3
CALL Statement	3
Argument 1	3 3 3
Argument 2	3
Argument 3	4
TYPES OF INPUT STATEMENTS	4
\$DATA Statement	4
\$TABLE Statement	5
Loading Statement	6
Numeric values	6
Octal values	7
Alphabetic values	7
Internally addressed values	8
Arithmetic expressions	8
Continuation of loading statement	9
\$\$ Comment Statement	9
DIAGNOSIS OF ERRORS ON INPUT CARDS	10
EXAMPLE	11
REMARKS	13
APPENDIXES.	
A - LOGICAL STRUCTURE OF INPUT ROUTINE	14
B - ILLUSTRATION OF VARIABLE NAMES IN TABLE	18
C - ERROR DIAGNOSTICS	19
D - STORAGE ALLOCATION	21
E - LISTING OF INPUT ROUTINE	22

		b 3

- (4) Convert the data value to the required form.
- (5) Store the data value in its assigned location.
- (6) Repeat steps (3), (4), and (5) until the data of that data group are exhausted.
 - (7) Return control to the calling program.

The details of the logical structure of the routine to accomplish these steps are presented in appendix A in the form of definitions. Appendixes B to E give, respectively, an illustration of the variable names in the table, error diagnostics, storage allocation, and the listing of the input routine.

ENTERING THE ROUTINE

The following discussion explains how to call (i.e., code the entry to) the INPUT routine.

CALL Statement

The standard CALL statement of FORTRAN II is used to transfer control to the INPUT routine. Three pieces of information are required as arguments in the calling sequence.

FORTRAN	

SAP

CALL INPUT (589, X, TABLE)

TSX INPUT, 4
HTR CON589
HTR X
HTR TABLE

These are examples of calling sequences in FORTRAN II and SAP. In either system the arguments 589, X, and TABLE are necessary for proper reading of data. After execution of the INPUT routine, control is returned to the statement following the calling sequence. A careful examination of each of the three arguments of the calling sequence will explain their function in the reading of data.

Argument 1. - The number 589 serves as identification of a data group. This value is compared with an identification number occurring on an input card. If these values agree, the processing of data is initiated and continues until another data identification card is encountered. If these values do not agree, no data are processed and control is returned to the calling program where normal program execution continues until the next input calling sequence is encountered. Argument 1 may be either a fixed-point number or a fixed-point variable.

Argument 2. - The location of X serves as a reference point for the storing of input data. Inasmuch as all data to be processed will

be stored relative to the memory location of X, the programmer is expected to provide fixed relations between the location of X and other locations to be loaded. In the FORTRAN language, these relative assignments are accomplished by use of COMMON or EQUIVALENCE statements or by relying on the order given automatically by FORTRAN. In any case, the INPUT routine assumes that serial memory locations will be arranged from larger to smaller absolute addresses; this is the way FORTRAN stores an array.

Argument 3. - The address of TABLE locates the first member of an array to be constructed and used by the INPUT routine. This array will contain the names of variables that are to be used on the cards and their memory location relative to X. Sufficient space in memory must be reserved for storing the table of names. If the program is written in FORTRAN, this is done by means of a DIMENSION statement. The names assigned by the user are stored six alphabetic characters per word. The last word may contain less than six characters and is filled out with zeros. The length of the array can be determined precisely by adding the locations required to store each name plus one location per name for a code number plus one location for a final zero entry that terminates the table. The information for the construction of the table is supplied via input cards.

TYPES OF INPUT STATEMENTS

The remainder of the report is devoted to a discussion of the input statements to be punched on cards. There are four basic types of statements, namely; (1) data group identifiers, (2) table statements, (3) loading statements, and (4) comments statements which this input routine is capable of processing. In the following paragraphs a discussion of each of these types is given along with examples of their use. In general, the statement is punched on an IBM card using the card from left to right and ending in column 72, assuming the card reader board is wired to read columns 1 to 72. Blanks are always ignored (except for ALF type data to be mentioned later).

\$DATA Statement

The \$DATA statement is a data group identifier. It specifies the group identification number associated with a particular group of input data. It always precedes a data group and must be the first statement on a card. For example,

\$DATA = 589 card 1

on the first card of a data group will cause the value 589 to be compared with the first argument of the calling sequence. If they are unequal, tape 7 will backspace one record (the equivalent of one card), and control will be returned to the calling or object program. It is

assumed that a calling sequence with this identification number will be forthcoming. If the value on the \$DATA card equals the value of the first argument of the CALL statement, the routine will load data until another \$DATA statement is encountered. Tape 7 is then backspaced one record to leave the new \$DATA statement ready to be read, and control is returned to the calling program. The \$DATA statement, then, serves to initiate the processing of data and to transfer control to the calling program at the end of the data group.

Whether data are loaded or not, the value of the identification on the \$DATA card present when the routine is called is stored in the decrement of absolute location 77463. This is the last erasable store and is accessible to FORTRAN programs as I(0) if I is the first array in COMMON. This number may be used by the programmer for logical control of the INPUT subroutine.

\$TABLE Statement

The object of \$TABLE statements is to make a table of names. In typical use, this table of names is initially empty, and the names to be used on subsequent cards are entered by processing \$TABLE statements. The statement begins with the word \$TABLE; this is followed by a comma, then the table information, and is terminated with the slash character.

Consider, for example, that the variable names VELOCITY, MASS, and RADIUS are to be assigned to memory locations in the array designated by X, the second argument of the calling sequence, as X(1), X(2), and X(3), respectively. The card would be punched

After card 2 is processed, the names VELOCITY, MASS, and RADIUS are in the table and can be used in subsequent loading statements. Their locations as the first, second, and third members of the array X are also in the table. No limit is placed on the length of a name, and it may begin with any alphabetic letter. If the name is to be associated with fixed-point data, which are considered to be less frequent, a decimal point is included with the location. For example, the statement

will place these names in the table and label them as fixed point. Any value subsequently loaded into INDEX, SUBSCRIPT, and I will be placed in the decrement part as an integer. The numbers will be stored in the 20th, 21st, and 22nd subscript positions of the array X. Appendix B contains a sample of the array TABLE to illustrate the contents of the table after cards 2 and 3 have been processed.

Note that all the values on cards 4 and 5 were placed in memory in accordance with the table assignments made on cards 2 and 3. The statement INDEX = 3 was continued between cards 4 and 5.

A variable name may be singly subscripted. A subscript must be an unsigned integer. For example:

RADIUS(2) = 6, 8,
$$-10$$
, $+24$

card 6

will arrange data in the array X as

$$X(4) = 6.0$$

 $X(5) = 8.0$
 $X(6) = -10.0$
 $X(7) = \text{no change}$
 $X(8) = 24.0$

Thus, the subscript (2) on the variable name RADIUS advances the storage counter to the second position of the array RADIUS before storing the values. Because the name RADIUS was made equivalent to X(3) by card 2, the value for RADIUS(2) is placed in X(4). The commas appearing between the numerical values on card 6 are an example of loading into consecutive memory locations. A series of numbers separated by commas are loaded in successive memory locations. Two commas in succession with no number included cause a memory location to be skipped without change, as for X(7).

Octal values. - A data value preceded by (OCT) will be loaded without conversion. The rightmost twelve digits, or less, if there are less, immediately following the) character, blanks omitted, are loaded as an octal number. In storage the octal number will be right-adjusted. The loading statement

$$I(2) = (OCT) 175 326$$

card 7

will store directly, without conversion, the octal number 000000175326 into the second member of the I array. The digits 8 and 9 will be stored modulo 8.

Alphabetic values. - A data value preceded by (AIF n) will be stored in binary coded decimal. This form, n being an integer, will cause the next n columns immediately following the) character, blanks included, to be read in BCD mode and stored consecutively six characters per location. If the last word is less than six characters in length, it will be filled out with blanks. All alphabetic, numeric, and special characters may be loaded with this form of loading statement. Symbols such as \$DATA will be interpreted as alphabetic data and will not be interpreted as control statements within the n columns of an (ALF n) form. The length of the alphabetic loading statement has

practical limitations only; but, if it exceeds 924 characters (or columns), machine memory locations smaller than octal 77462 will be overwritten.

An example of an alphabetic-type loading statement would be

I(3) = (ALF 23) MAKE IT UNDERSTANDABLE.

card 8

where the 23 columns of characters will be placed in four consecutive words of memory.

Internally addressed values. - An internally addressed value is one that refers to the contents of memory by name. In the example

RADIUS(7) = RADIUS(3)

card 9

it is demonstrated that a name may refer to a piece of data currently in storage. The loading of this statement results in the replacing of the contents of the storage equivalent to RADIUS(7) with the value found in the location RADIUS(3). Any name that is used as an internally addressed value must have appeared previously in \$TABLE statement.

Arithmetic expressions. - Provisions have been made to allow simple arithmetic to be performed on data at execution time. Any number may be altered by addition (+), subtraction (-), multiplication (*), or division (/) with other numbers or names, provided all names used in statements appear previously in \$TABLE statement. Operations are performed in sequence from left to right on the card. Consider the statement

RADIUS(2) = 0.5 * RADIUS(3), RADIUS(3) = 1.06E + 2 - ()/I card 10

as being executed subsequent to card 6. The result of loading this statement would be to replace the contents of the location RADIUS(2) with the product of 0.5 and RADIUS(3) or, using the value loaded from card 6, RADIUS(2) would contain 4.0 in floating-point form. Execution of the second statement on the card will then change RADIUS(3). value of the arithmetic statement following RADIUS(3) will be computed as follows: First the difference between 106 and the current value of RADIUS(3) (which is denoted by an empty set of parentheses) will be computed. Then the difference will be divided by the contents of the location equivalent to I. The value, therefore, placed in the location RADIUS(3) would be 2.0 in floating-point form. No regard need be given the modes of the numbers in a loading statement, since all operations are performed in floating-point form with the proper conversion provided. No provisions have been made for subgrouping or nesting opera-If more than one operator appears in sequence (such as A/-3), an error diagnostic will result.

practical limitations only; but, if it exceeds 924 characters (or columns), machine memory locations smaller than octal 77462 will be overwritten.

An example of an alphabetic-type loading statement would be

I(3) = (ALF 23) MAKE IT UNDERSTANDABLE.

card 8

where the 23 columns of characters will be placed in four consecutive words of memory.

Internally addressed values. - An internally addressed value is one that refers to the contents of memory by name. In the example

RADIUS(7) = RADIUS(3)

card 9

it is demonstrated that a name may refer to a piece of data currently in storage. The loading of this statement results in the replacing of the contents of the storage equivalent to RADIUS(7) with the value found in the location RADIUS(3). Any name that is used as an internally addressed value must have appeared previously in \$TABLE statement.

Arithmetic expressions. - Provisions have been made to allow simple arithmetic to be performed on data at execution time. Any number may be altered by addition (+), subtraction (-), multiplication (*), or division (/) with other numbers or names, provided all names used in statements appear previously in \$TABLE statement. Operations are performed in sequence from left to right on the card. Consider the statement

RADIUS(2) = 0.5 * RADIUS(3), RADIUS(3) = 1.06E + 2 - ()/I card 10

as being executed subsequent to card 6. The result of loading this statement would be to replace the contents of the location RADIUS(2) with the product of 0.5 and RADIUS(3) or, using the value loaded from card 6, RADIUS(2) would contain 4.0 in floating-point form. Execution of the second statement on the card will then change RADIUS(3). value of the arithmetic statement following RADIUS(3) will be computed as follows: First the difference between 106 and the current value of RADIUS(3) (which is denoted by an empty set of parentheses) will be computed. Then the difference will be divided by the contents of the location equivalent to I. The value, therefore, placed in the location RADIUS(3) would be 2.0 in floating-point form. No regard need be given the modes of the numbers in a loading statement, since all operations are performed in floating-point form with the proper conversion provided. No provisions have been made for subgrouping or nesting opera-If more than one operator appears in sequence (such as A/-3), an error diagnostic will result.

The array X would finally appear as:

```
X(1) = 3.4
X(2) = 32.0
X(3) = 4.0 \times 10^{21}
                          floating point
X(4) = 4.0
X(5) = 2.0
X(6) = -10.0
X(7) = whatever was present originally
X(8) = 24.0
                         floating point
X(9) = 8.0
X(20) = 3
X(21) = 47
                         fixed point
X(22) = 49
X(23) = 000000175326
                         OCTAL
X(24) = MAKE I
                         BCD
X(25) = T UNDE
                         BCD
X(26) = RSTAND
                         BCD
X(27) = ABLE.
                         BCD
```

Continuation of loading statement. - To continue a right side of a loading statement from one card to the next, simply continue key punching on the next card. Continuation of the right side never fails.

The name on the left of the equal sign, however, cannot generally be continued. It will be found that continuation of the left side does work unless the part of the statement appearing on the second card appears (by itself) to be a left side, that is, a name followed by an equal sign. This restriction on left-side continuation was adopted to permit the omission of the final comma on the right side of loading statements. In actual use, this left-side restriction has not been inconvenient; in fact, the legibility is better when the name is entirely on one card. An example of correct continuation of a loading statement was given on cards 4 and 5.

\$\$ Comment Statement

This type statement causes the entire card on which the \$\$ pair appears to be written in BCD on tape 6 for listing off-line. The \$\$ characters may appear anywhere on any type card and even ahead of a \$DATA type card. The effect of the \$\$ symbol pair is to move the end

of a card from column 72 forward to the column ahead of the symbol pair. Anything appearing to the right of the \$\$ symbols will be listed but will not be treated as a loading statement. For example, two cards containing

\$\$ THIS IS THE FOURTH CASE.

card 11

I = 4, VELOCITY(9) = 3.762E7, \$\$ INPUT CARD

card 12

will cause these cards to be written on tape 6 along with all other program output. Furthermore, if these cards are processed along with the previous cards, the values for I and VELOCITY(9) will be changed to a fixed-point 4 and a floating-point 37620000.0, respectively.

DIAGNOSIS OF ERRORS ON INPUT CARDS

The greatest source of errors introduced during preparation of input statements arises from misspelling names, improper use of the numeric-alphabetic shift on the key punch, and misuse of operators, commas, and equal signs. Considerable care has been taken within the program to detect errors that lead to illegitimate situations in the processing of the data. However, a few illegitimate statements are not detected by the routine and will process improperly or, as likely, be omitted.

When an error is detected on a card, the type of error and the complete offending card image are written on tape 6. An asterisk is recorded beneath the last character processed and is usually within a few characters of the one causing the error. If the asterisk is beneath the first character of a card, the error was probably on the preceding card. Generally, a cursory examination of the printed card and asterisk is sufficient for detection and correction of the card. A complete list of error types and associated discussions is given in appendix C for a more complete analysis.

As an illustration of a machine-detected error, assume that the cards

\$DATA = 589, \$TABLE, 1 = TX/

\$\$ card 13

TY = 35.7

\$\$ card 14

\$DATA = 589

\$\$ card 15

are to be processed by the input routine. An error would be detected when the variable name TY is processed because it is not in the table. Tape 6 would subsequently contain the following BCD information for listing off-line:

Examination of the error type and discussion in appendix C reveals that a type T error means "There is no table entry for a variable name."

EXAMPLE

The following FORTRAN program is presented as an example of a calling sequence for the INPUT subroutine and may be used to check the functioning of the routine.

THIS IS A SAMPLE PROGRAM TO CALL THE INPUT SUBROUTINE. C IT READS A SET OF DATA AND PRINTS OUT AN AREA OF STORAGE. COMMON C DIMENSION X(30), TABLE(15), C(65), L(65) EQUIVALENCE(X,C),(TABLE,C(50)),(L,C) C TRANSFER TO THE INPUT ROUTINE 1 CALL INPUT (589 * X * TABLE) C PRINT OUT THE STORE. WRITE OUTPUT TAPE 6,101,(J,X(J),J=1,9),(J,L(J),J=20,27) TRANSFER TO READ MORE DATA GO TO 1 101 FORMAT(9(3H X(I2+1H))PE18+6/)+ 3(3H X(I2+1H)+I7/)3H X(+I2+1H)+ 1015/,4(3H X(I2,1H)A8/)) END OF FORTRAN STATEMENTS.

The data cards listed in the text are used. For clarity, all cards have been terminated with \$\$ so that they will be listed on the output, and two extra \$DATA cards are inserted, making four groups of data. The data cards are as follows:

```
$DATA = 589
                                                                $$ CARD
$TABLE, 1 = VELOCITY, 2 = MASS, 3 = RADIUS/
                                                                $$ CARD
$TABLE,20. = INDEX, 21. = SUBSCRIPT, 22. = I
                                                                $$ CARD
VELOCITY = 3.4, MASS = 32, RADIUS = 4E+21, INDEX
                                                                $$ CARD
= 3, SUBSCRIPT = 47, I = 49
                                                                $$ CARD
                                                                         5
RADIUS(2) = 6.8.-10..+24
                                                                SS CARD
$DATA = 589.
                                                                $$INSERTED
I(2) = (OCT) 175 326
                                                                $$ CARD
I(3) = (ALF23)MAKE IT UNDERSTANDABLE.
                                                                $$ CARD
RADIUS(7) = RADIUS(3)
                                                                $$ CARD
                                                                         9
RADIUS(2) = 0.5 *RADIUS(3) * RADIUS(3) = 1.06E+2-()/I
                                                                $$ CARD 10
       SDATA = 589
                                                                $$INSERTED
$5THIS IS THE FOURTH CASE
                                                                   CARD 11
I = 4, VELOCITY(9) = 3.762E7, $$INPUT CARD
                                                                   CARD 12
$DATA = 589. $TABLE: 1 = TX /
                                                                $$ CARD 13
TY = 35.7
                                                                $$ CARD 14
                                                                $$ CARD 15
SDATA = 589
```

In this example the storage will be printed out after the data cards have been processed for each group. (A group is all cards between \$DATA cards.) The listing made from tape 6 is as follows.

REMARKS

The INPUT routine as described removes the necessity for the programmer to supply detail concerning data at the time the problem is coded. At most, he must decide the appropriate time and number of times during execution of the program that input is to be read. The routine also provides increased flexibility at execution time to meet the requirement of specific problems.

It is felt that the form of the statements for loading data presented in this report is considerably more legible and, consequently, is easier to check for accuracy and completeness than the form previously in general use.

A binary deck can be obtained for this program from the Lewis Research Center (Att'n Mr. Vearl N. Huff). A similar deck for the 7090 is also available.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 28, 1961

APPENDIX A

LOGICAL STRUCTURE OF INPUT ROUTINE

The following definitions and specifications define the external characteristic of the INPUT routine.

- (1) There are two classes of statements: loading statements, and control statements.
- (2) A loading statement consists of a left side, an equal sign, and one or more right sides.
 - (a) A loading statement loads the machine memory location corresponding to the left side with the value obtained from the right side.
 - (b) Successive machine memory locations are loaded with the values obtained from successive right sides.
- (3) A left side must consist of a name and must be followed by an equal sign. It may follow previous loading statements. A left side is normally restricted to one card.

(4) Any name:

- (a) Must begin with an alphabetic character.
- (b) May contain any number of alpha-numeric characters (practical limits only).
- (c) Must be defined as to corresponding location and as either fixed or floating point in the table of names (failure to enter a name in TABLE will cause an error diagnostic).
- (d) Will have zero characters translated to the letter 0 in any position after the first.
- (e) May be singly subscripted.
- (f) Is ended by an operator or the end of a side.
- (g) Will have the value of the contents of the location to which it corresponds. Normally, the value is treated as a floating-point number. However, if the name is designated as fixed-point, then the value will be fixed before storing and floated when obtained from storage. Fixed-point numbers are stored in the prefix and decrement as is done with FORTRAN.

APPENDIX A

LOGICAL STRUCTURE OF INPUT ROUTINE

The following definitions and specifications define the external characteristic of the INPUT routine.

- (1) There are two classes of statements: loading statements, and control statements.
- (2) A loading statement consists of a left side, an equal sign, and one or more right sides.
 - (a) A loading statement loads the machine memory location corresponding to the left side with the value obtained from the right side.
 - (b) Successive machine memory locations are loaded with the values obtained from successive right sides.
- (3) A left side must consist of a name and must be followed by an equal sign. It may follow previous loading statements. A left side is normally restricted to one card.

(4) Any name:

- (a) Must begin with an alphabetic character.
- (b) May contain any number of alpha-numeric characters (practical limits only).
- (c) Must be defined as to corresponding location and as either fixed or floating point in the table of names (failure to enter a name in TABLE will cause an error diagnostic).
- (d) Will have zero characters translated to the letter 0 in any position after the first.
- (e) May be singly subscripted.
- (f) Is ended by an operator or the end of a side.
- (g) Will have the value of the contents of the location to which it corresponds. Normally, the value is treated as a floating-point number. However, if the name is designated as fixed-point, then the value will be fixed before storing and floated when obtained from storage. Fixed-point numbers are stored in the prefix and decrement as is done with FORTRAN.

- (5) A subscript (if any) follows and is part of a name; it begins with a left parenthesis followed by digits, followed by a right parenthesis. The subscript refers to members of arrays:
 - (a) A variable (or named) subscript is illegal.
 - (b) A subscript may be used on any name.
 - (6) A right side:
 - (a) Must follow an equal sign or another right side.
 - (b) May be a name.
 - (c) May be a number.
 - (d) May be an octal number.
 - (e) May be an alphabetic field.
 - (f) May be an arithmetic expression.
 - (g) May be blank. A blank is two commas in succession (a blank will not change the present value of the memory).
 - (h) Must be terminated by a comma or the end of a card, but the end of a card terminates a right side only if it is determined to be the end of the loading statement (see (7)).
 - (i) May be continued from one card to another.
 - (7) The end of a card terminates a loading statement if:
 - (a) The next card is \$DATA or \$FABLE.
 - (b) The next card begins with a left side (i.e., begins with a name followed by an equal sign on the same card).
- (8) A number is an unsigned string of digits that may contain a decimal and may be followed by a base 10 exponent. If there are more than ten digits in the string exclusive of the exponent, only the ten most significant digits will be used in conversion to find its value. Decimal places are counted for indefinitely long strings. A number is terminated by an operator or the end of the right side.

An exponent begins with the letter E and may be followed by a sign and/or a string of digits whose value is used as the exponent. The exponent, when present, is used in conversion to compute the final value of the number. Overflow is possible. A signed number is treated as an arithmetic statement.

- (9) An octal number begins with a left parenthesis followed by the letter 0, which may be followed by any number of letters followed by a right parenthesis, followed by any number of digits, normally followed by a comma (see (6h)). The rightmost twelve digits, or less if there are less, are used as the value right-adjusted. Neither floating- nor fixed-point designations have any effect for storing octal numbers.
- (10) An alphabetic field begins with a left parenthesis followed by the letter A, and may be followed by any number of letters, and must be followed by any number of digits (which will designate the number of card columns in the alphabetic field) followed by a right parenthesis, followed by the alphabetic field in successive columns (to col. 72), and continuing if necessary on successive cards until the designated number of columns has been stored. Any BCD characters can be punched in the field. A comma normally follows the alphabetic field to terminate the right side (see (6h)). Neither floating- nor fixed-point designation has any effect when storing ALF data.
- (11) An arithmetic expression contains one or more operators. The following rules must be observed in arithmetic statements:
 - (a) The operators are plus, minus, asterisk, and slash.
 - (b) An arithmetic expression also contains at least one operand.
 - (c) The operands may be names, numbers, or empty parentheses.
 - (d) Empty parentheses are used to designate the current value of the current left side.
 - (e) Two operators must not appear together.
 - (f) Operations are performed from left to right on the values of the operands in the sequence given, and the result is the value of the arithmetic statements.
 - (g) Parentheses to indicate order of operations are illegal.
 - (h) Storage in named memory locations may be used to accumulate factors for subsequent statements.
- (12) A \$TABLE control statement stores names and equivalent machine locations relative to the second argument of the calling sequence in a table located relative to the third argument of the calling sequence. The \$TABLE control statement begins with a dollar sign followed by a T, followed by any number of alphabetic characters, followed by a comma. Subsequent substatements are interpreted as \$TABLE substatements.

- (a) \$TABLE substatement begins with a numeric string that contains a decimal point only if a fixed-point variable is being defined, and is followed by an equal sign followed by a name, followed by a comma.
- (b) Any number of \$TABLE substatements may be used and may be unconditionally continued over any number of cards. The last statement is followed by a slash that ends the \$TABLE control statement.
- (13) A \$DATA control statement is used to establish correspondence between a group of data and a particular calling sequence and to signal an end of a group of data. It begins with a dollar sign in the first nonblank column on a card, and is followed by the letter D followed by any number of letters, followed by an equal sign, followed by a string of digits, followed by a comma or the end of the card. The value of the string of digits is used to compare with the first argument of the calling sequence. The entire statement must be on one card.
- (14) The symbol pair \$\$ occurring on a card has the effect of ending the processing of the card at the column ahead of the \$\$ symbol pair and causes the entire card (72 columns) to be written on output tape 6 along with any other output. The next character processed will be read from the next card. The \$\$ symbol pair serves to insert comments in the output and may be used to list the input cards with the output. It may be used anywhere but will not be interpreted within an alphabetic field.

APPENDIX B

ILLUSTRATION OF VARIABLE NAMES IN TABLE

Assuming that the following \$TABLE cards have been processed, the array TABLE would appear as indicated.

\$TABLE, 1 = VELOCITY, 2 = MASS, 3 = RADIUS/

\$TABLE, 20. = INDEX, 21. = SUBSCRIPT, 22. = I/

BCD	OCTAL	BLE	TABLE
CONTENTS*	VALUE	ATION	LOCATI
(code word)	 000003000001	1	1
VELOCI	652543462331	2	2
${ m TY}$	637000000000	3	3
(code word)	000002000002	4	4
MASS	442162620000	5	- 5
(code word)	000002000003	6	6
RADIUS	512124316462	¹ 7	· ₇ 7
(code word)	400002000024	8	8
INDEX	314524256700	9	. 9
(code word)	400003000025	10	10
SUBSCR	626422622351	11	11
IPT	314763000000	12	12
(code word)	400002000026	13	13
Ĭ	310000000000	14	14
(zero code)	00000000000	15	15

^{*}Except for code word. The decrement of each code word contains a number equal to 1 plus the number of stores used for the name. The address of each code word contains an octal number corresponding to the table assignment of the name. The sign of a code word is negative if the variable is fixed point. A negative sign in this listing appears as a leading 4.

(RTT)

APPENDIX C

ERROR DIAGNOSTICS

The following is a list of errors referred to by the off-line listing.

Error Reason type (A) A nonnumeric character appears in the numeric field of a \$TABLE type card. (B) A comma was not used to terminate an ALF field. (C) An illegitimate character appears in the subscript of a name. (D) The equal sign of a \$DATA type statement is missing or preceded by a nonalphabetic character. An illegitimate character appears in the numeric field of a (E) number. An illegitimate character appears in the exponent field of an **(**F) E format number. (G) A special character was used in a name of a table entry. (J) An (OCT) field contains a nonnumeric character. (K) A special character appears in character count of an (ALF) type field, or the character count was zero. (L) A special character other than +, -, * , or / was interpreted as an arithmetic operator. (M) A nonnumeric character appears in the identification field of a \$DATA type card. (N)More than one decimal point occurs in a number.

(S) At least one numeric did not precede the E of an E format number.

A REDUNDANCY tape test failed five times.

- (T) There is no table entry for a variable name.
- (U) A \$DATA type card was not found as the first card of a set of data.
- (V) The exponent of a floating-point number was out of range.

APPENDIX D

STORAGE ALLOCATION

Nearly all intermediate data generated by the INPUT routine are stored in an area that is generally inaccessible to programmers coding in the FORTRAN language. This area is the last 205 core positions of the computer. It is temporary storage utilized by many of the library routines written for the 704 computer as well as an area from which the BSS loader operates in loading program decks. Location 77463 (octal), while in the erasable area, is readily accessible to FORTRAN coders. The location will contain the identification number from the \$DATA card present when the INPUT routine is called, whether data are loaded or not. When this number is to be used later, it should be moved to a reserved location. The assignments in the common area are as follows:

```
OCT
 77776
              RECORD(1)
 77775
 77774
 77773
 77772
 77771
 77770
 77767
 77766
77765
77764
77763
 77762
77761
77760
77757
              KΚ
77756
77755
77754
77753
              Temporary Index B in SUB TABLE. Also NEXP in SUB NUMBER.
77752
77751
              MSHIFT
77750
              ILOC
77747
77746
              KWTl
77745
              KNT2
77744
             KWT3
77743
              SIGN in SUB CHRCTR
77742
             ALF in SUB CHRCTR
77741
             TAG in SUB CHRCTR
77740
             Temporary MQ in SUB STORE
77737
77736
             Index A storage in SUB CHRCTR
77735
             Index B storage in SUB CHRCTR
77734
77733
             Index C storage in SUB LOOK
77732
             Index A storage in SUB STORE
77731
             Index B storage in SUB STORE
77730
             Index C storage in SUB TABLE
77727
             Table entry index in SUB TABLE
77726
             Index C storage in SUB CHRCTR
77725
             Temporary MQ storage in SUB TEST
77724
             Temporary ACC storage in SUB TEST
77723
             Index C storage in SUB DATA
77722
             Third argument to SUB INPUT
77721
77720
             Index C storage in SUB NUMBER
77717
             Pseudo ACC
77716
             ILOCI
77715
             VAR(1)
77714
77462
             VAR(153)
77463
             IDENT,
                        $DATA identification number
```

LISTING OF INPUT ROUTINE

THIS IS SUBROUTINE INPUT. ITS CALLING SEQUENCE CONTAINS THREE ARGUMENTS——AN IDENTIFICATION CODE NUMBER, THE FIRST LOCATION RELATIVE TO WHICH ALL DATA IS TO BE LOADED, AND THE FIRST LOCATION OF A TABLE TO BE USED BY THE ROUTINE.

```
INCLUDED IN THIS ASSEMBLY ARE SUBROUTINES
  1 INPUT
     CHRCTR
  3
     CLEAR
     COMPAR
     ERROR
     LOOK
  6
     NAME
  8
     NUMBR
     STORE
  10
     TABLE
  11
     TEST
  12 ACCUM, FIX, FLT, BINARY
```

CODING FOR THE PROGRAM CARD.

	00000	ORG 0	
		PGM	
00000	0 00000 0 01521	PZE EXP+1,0,0	
00001	0 00000 0 77462	PZE 32562	
00002	314547646360	BCD linput	
00003	0 00000 0 00004	PZE INPUT	

THESE TEMPORARY VARIABLES ARE LOCATED IN ERASABLE UPPER MEMORY.

		REL		
00000		ORG	0	7 G
77776	RECORD	SYN	32766	CARD IMAGE.
77760	I	SYN	32752	WORD POINTER FOR CARD
77757	KK	SYN	32751	CHARACTER POINTER FOR CARD.
77756	Q	SYN		UNTESTED CHARACTERS IN COMPAR.
77755	WORD	SYN	32749	CURRENT CHARACTER IN ADDRESS PART.
77754	OPER	SYN	32748	DIGIT IN DECREMENT REPRESENTS OPERATOR.
77753	В	SYN	32747	TEMP INDEX IN SUB TABLE.
77753	NEXP	SYN	32747	NUMERIC VALUE OF EXPONENT.
77752	J	SYN	32746	COUNTER IN SUB STORE.
77751	MSHIFT	SYN	32745	COUNTER IN SUB STORE.
77750	ILOC	SYN	32744	DATA BROUGHT FROM TABLE.
77747	TEMP	SYN	32743	TEMPORARY STORAGES.
77746	KNT 1	SYN	32742	COUNTER TOTAL DIGITS.
77745	KNT2	SYN		NONZERO UNTIL DECIMAL IN NUMBR.
77744	KNT3	SYN	32740	ZERO UNTIL DIGIT IN EXPONENT.
77714	VAR	SYN	32716	SPACE FOR NAMES ETC.
77463				DECREMENT HAS IDENT FROM CARD.
77743	SIGN	EQU	TEMP-4	MINUS IF SUB CHRCTR READS CARD.
77742	TAG	EQU	TEMP-5	SAVES \$ IN SUB CHRCTR.
77741			TEMP-6	NONZERO MEANS ALF MODE IN CHRCTR.
77737	JK	EQU	TEMP-8	SUBSCRIPT CORRESPONDS TO NAME.
77734			TEMP-11	COUNTS TAPE READ FAILURES.
77721	JK1	EQU		CURRENT SUBSCRIPT OF LEFT SIDE.
77717	ACC			PSEUDO ACCUM.
	ILOC1			ILOC FOR LEFT SIDE.
77715	KNT4	EQU	TEMP-26	NONZERO AFTER EXPONENT SIGN.

```
00000
       0 00000 0 00000 INDX
                                HTR 0
                                                  STORAGE FOR INDEX A.
00001
       0 00000 0 00000
                                HTR 0
                                                  STORAGE FOR INDEX B.
       0 00000 0 00000
00002
                                HTR 0
                                                  STORAGE FOR INDEX C.
00003
       314547646360
                                BCD TINPUT
00004 -0 63400 1 00000 INPUT
                                SXD INDX,1
                                                  SAVE INDEX REGISTER A.
00005 -0 63400 2 00001
                                                  SAVE INDEX REGISTER B.
                                SXD INDX+1,2
00006 -0 63400 4 00002
                                SXD INDX+2,4
                                                  SAVE INDEX REGISTER C.
       0 50000 0 00351
00007
                                CLA ONEA
00010
       0 40000 4 00002
                                ADD 2,4
                                                 2,4 IS THE BASE LOCATION.
00011
       0 62100 0 00127
                                STA SET
00012
       0 62100 0 00153
                                STA LOCI
00013
       0 62100 0 00311
                                STA LOC4
00014
       0 50000 4 00001
                               CLA 1,4
                                                  1,4 IS THE IDENTIFICATION NUMBER.
00015
       0 62100 0 00102
                               STA NREGI
00016
       0 53400 1 00304
                               LXA LOCBB-2,1
                                                 INITIALIZE 36
00017
       0 60000 1 77761
                               STZ I+1,1
                                                   LOCATIONS
                               TIX *-1,1,1
00020
       2 00001 1 00017
                                                   TO ZERO.
00021
         60100 0 77716
                               STO ILOCI
                                                 MAKE NON-ZERO.
00022
       0 50000 4 00003
                               CLA 3,4
                                                 3,4 IS THE LOCATION OF THE TABLE.
00023
       0 62100 0 00677
                               STA LOCFC
                                                 PREPARE
00024
       0 40000 0 .00351
                               ADD ONEA
                                                  THE
00025
       0 62100 0 00664
                               STA LOCFA
                                                   ARGUMENT STORAGES
00026
       0 62100 0 00707
                               STA LOCFF
       0 07400 4 00517
00027
                               TSX CLEAR, 4
                                                 CLEAR THE VAR REGION.
                                   LOOK AT THE FIRST CHARACTER ON THE FIRST CARD
                                   IN SEARCH OF A $ SIGN.
00030
       0 07400 4 00352 LOCAA
                               TSX CHRCTR,4
00031
       0 76000 0 00003
                               SSP
00032
       0.40200 0.00350
                               SUB DOLLAR
                                                 CHECK FOR A $ SIGN.
00033
       0 60100 0 77755
                               STO WORD
00034
       0 07400 4 00524
                               TSX COMPAR, 4
       246300000000
                               BCD 1010000
00035
00036
       0 02000 2 00042
                               TRA *+4,2
00037
       0 02000 0 00345
                               TRA ERRU
                                                 JUNK
00040
       0 02000 0 00111
                               TRA LOCAH
                                                 T
00041
       0 33400 2 00102 LOCAB
                               LXA NREG1,2
                                                 Ð
00042
       3 00000 2 00050
                               TXH LOCAD, 2, 0
                                                 NREGI IS ZERO IF A $DATA CARD HAS
                                   ALREADY BEEN READ.
00043
       0 76400 0 00207 LOCAC
                               BST
                                   THIS IS THE PROGRAM RETURN.
00044 -0 53400 1 00000 RTN
                               LXD INDX,1
                                                RESET INDEX A.
00045 -0 53400 2 00001
                               LXD INDX+1,2
                                                 RESET INDEX B.
00046 -0 53400 4 00002
                               LXD INDX+2,4
                                                 RESET INDEX C.
00047 0 02000 4 00004
                               TRA 4,4
                                                 RETURN TO CALLING PROGRAM.
                                   HUNT FOR THE = SIGN OF THE $ DATA CARD.
00050
       0 07400 4 00352 LCCAD
                               TSX CHRCTR,4
       0 07400 4 00524
00051
                               TSX COMPAR,4
00052
       130000000000
                               BCD 1=00000
00053
                               TRA *+5,2,2
       0 02002 2 00060
00054
       0 02000 0 00335
                               TRA ERRD
                                                 JUNK
00055
       0 02000 0 00050
                               TRA LOCAD
                                                 ALPHABETIC
00056
       0 02000 0 00335
                               TRA ERRD
                                                 NUMERIC
00057 -0 63400 4 77741
                               SXD ALF,4
                                                 = SIGN
                                   USE ALF MODE TO TEST ALL CHARACTERS.
00060 0 02000 0 00062
                               TRA LOCAF
00061 0 07400 4 01453 LOCAE TSX BINARY,4
                                                FORM BINARY WORD IN VAR.
```

```
COMES HERE WHEN = SIGN HAS BEEN FOUND. GET THE
                                    IDENTIFICATION NUMBER FROM THE CARD.
00062 0 07400 4 00352 LOCAF
                                TSX CHRCTR,4
00063
       0 12000 0 00067
                                TPL *+4
                                                 IF NEGATIVE, NO COMMA WAS ON THE
00064
        0 76400 0 00207
                                BST 7
                                                 $DATA CARD SO BACKSPACE TAPE.
                                                 INITIALIZE I TO READ A CARD.
00065
        0 60000 0 77760
                                STZ I
00066
        0 02000 0 00077
                                TRA LOCAG
        0 07400 4 00524
00067
                                TSX COMPAR, 4
        735360000000
00070
                                BCD 1,$ 000
00071
        0 02002 2 00100
                                TRA *+7,2,2
00072
        0 02000 0 00343
                                TRA ERRM
                                                 JUNK
00073
        0 02000 0 00343
                                TRA ERRM
                                                 ALPHABETIC
        0 02000 0 00061
00074
                                TRA LOCAE
                                                 NUMERIC
00075
        0 02000 0 00062
                                TRA LOCAF
                                                 RI ANK
00076
       0 60100 0 77743
                               STO SIGN
                                                 DOLLARS
                                    COMES HERE TO CHECK THE REGION CODE AND THE
                                    VALUE APPEARING ON THE $DATA CARD.
00077
       0 50000 0 77714 LOCAG
                               CLA VAR
                                                 COMMA
       0 76700 0 00022
00100
                                ALS 18
00101
       0 60100 0 77463
                                STO IDENT
                                                 SAVE IDENT AT 77463.
00102
       0 40200 C 00000 NREG1
                               SUB **
                                                 PLACE FIRST ARG IN THIS ADDRESS.
00103 -0 10000 0 00043
                                TNZ LOCAC
                                                 ZERO IF CALL CODE = $DATA CODE.
00104 0 60000 0 77741
                                STZ ALF
                                                 ALF = 0 MEANS NO ALF INFO.
00105
       0 62100 0 00102
                               STA NREGI
                                                 TO INDICATE THAT A $DATA CARD HAS
00106 -0 53400 2 77741
                               LXD ALF, 2
                                                 BEEN READ.
00107 -0 63400 2 00121
                               SXD TESTJK,2
                                                 ZERO THE DECREMENT.
00110 0 02000 0 00155
                               TRA LOCANI
                                   COMES HERE IF IT WAS A $ TABLE CARD.
00111 0 53400 2 00102 LOCAH
                               LXA NREG1,2
                                                 CHECK TO SEE IF A $ DATA CARD HAS
00112 -2 00000 2 00114
                               TNX LOCAJ, 2, 0
                                                 BEEN READ. NREG1 = 0 IF SO.
00113
      0 02000 0 00345
                               TRA ERRU
00114
      0 07400 4 01242 LOCAJ
                               TSX TABLE, 4
00115
      0 02000 0 00157
                               TRA LOCANS
                                   COMES HERE IF AN ALPHABETIC CHARACTER WAS FOUND.
00116 0 07400 4 00714 LOCAK
                               TSX NAME, 4
00117 -0 10000 0 00126
                               TNZ SET-1
                                                 ZERO MEANS ON LEFT OF = SIGN.
00120 -0 53400 1 77721
                               LXD JK1,1
                                                 IF JK1 DIDNOT INCREASE THEN
00121 -3 00000 1 00161 TESTUK TXL ERRL,1,**
                                                 AN = SIGN WAS NOT USED.
00122 -0 63400 2 00121
                                                 SAVE JK1 FOR NEXT TEST.
SAVE SIGN OF TABLE ENTRY.
                               SXD TESTJK,2
00123 0 50000 0 77750
                               CLA ILOC
00124
      0 60100 0 77716
                               STO ILOCI
00125 0 02000 0 00156
                               TRA LOCAN2
00126 -0 53400 2 77737
                               LXD JK,2
                                                 PREPARE TO ACCUMULATE THE NUMBERS
                               CLA **,2
      0 50000 2 00000 SET
00127
                                                 IN THE PSEUDO ACCUMULATOR.
       0 60100 0 77747
00130
                               STO TEMP
00131
       0 50000 0 77750
                               CLA ILOC
00132
                               TPL LOCAM
       0 12000 0 00137
                                                 MINUS MEANS FLOAT THE NUMBER.
00133
       0 07400 4 01462
                               TSX FLT,4
00134
       0 02000 0 00137
                               TRA LOCAM
                                   COMES HERE IF NUMERIC FIELD.
       0 07400 4 00777 LOCAL
00135
                               TSX NUMBER,4
00136
       0 60100 0 77747
                               STO TEMP
       0 07400 4 01476 LOCAM
00137
                               TSX ACCUM, 4
                                                ACCUMULATE RESULTS IN ACC.
00140
       0 07400 4 00517
                               TSX CLEAR, 4
       0 07400 4 00524
00141
                               TSX COMPAR, 4
00142 730000000000
                               BCD 1,00000
                                                LOOK FOR COMMA
```

```
00143 0 02000 2 00146
                                TRA ++3,2,0
00144 0 02000 0 00200
                                TRA LCCAR
                                                  OTHER THAN COMMA.
00145 -0 53400 2 77721
                                LXD JK1,2
                                                  COMMA
00146
       0 50000 0 77717
                                CLA ACC
                                STZ ACC
LDQ ILOC1
00147
       0 60000 0 77717
                                                  INITIALIZE
00150
       0 56000 0 77716
                                                  IS THIS VARIABLE FIXED POINT.
00151
       0 16200 0 00153
                                TQP LOC1
                                                  NEGATIVE IS FIXED POINT.
00152
       0 07400 4 01470
                                TSX FIX,4
00153 0 60100 2 00000 LCC1
                                STO **.2
                                                  STORE THE NUMBER RELATIVE TO BASE.
00154 -C 53400 2 77721 LOCAN
                                LXD JK1,2
00155 1 00001 2 00156 LOCAN1 TXI *+1,2,1
                                                  RAISE STORING INDEX BY ONE.
00156 -0 63400 2 77721 LOCAN2 SXD JK1.2
                                                  SAVE IT.
00157 ~0 53400 1 77754 LOCAN3 LXD OPER.1
                                                  ANY OPERATORS LEFT OVER.
00160 -3 00000 1 00163
                                TXL #+3,1,0
00161 0 07400 4 00564 ERRL
                                TSX ERROR, 4
                               BCD 1 (L)
CLA ACC
00162
       607443346060
00163 0 50000 0 77717
                                                  ANY DATA LEFT OVER.
00164 -0 10000 0 00161
                                TNZ ERRL
                                    CALL THIS THE SWITCH HOUSE.
00165 0 07400 4 00517 LCCAO
                                TSX CLEAR, 4
       U U7400 4 00352 LOCAP
00166
                                TSX CHRCTR, 4
       0 07400 4 00524 LOCAQ
00167
                                TSX COMPAR.4
00170
       336174000000
                                BCD 1./1000
00171
       0 02002 2 00200
                                TRA #+7,2,2
00172
       0 02000 0 00200
                                TRA LOCAR
                                                  $D, $T, OR OPERATORS.
00173
       0 02000 0 00116
                                TRA LOCAK
                                                  ALPHABETIC
00174
       0 02000 0 00135
                                TRA LOCAL
                                                 NUMERIC
00175
       0 02000 0 00212
                                TRA LOCAT
                                                  ( SIGN
00176
       0.02000 0 00200
                                TRA LOCAR
                                                  / SIGN
00177
       0 02000 0 00135
                                TRA LOCAL
                                                  DECIMAL
00200 -0 53400 1 77754 LOCAR
                               LXD OPER.1
                                                  ANY OPERATORS LEFT OVER.
00201
       3 00000 1 00161
                                TXH ERRL, 1,0
                                                 HIGH MEANS ALREADY HAS OPERATOR.
      0 40200 0 00350
00202
                                SUB DOLLAR
                                                 SPLIT OFF $ CHARACTER FROM OTHERS.
00203
      0 12000 0 00033
                                TPL LOCAA+3
                                                  IF PLUS, PROCESS THE $ TYPE CHARACTER.
                                    WHAT KIND OF OPERATOR IS THIS.
00204
       0 07400 4 00524
                               TSX COMPAR, 4
       204061547300
00205
                               BCD 1+-/*,0
00206
       3 00005 2 00161
                               TXH ERRL, 2,5
                                                 REMOVE THE JUNK.
00207
      3 00004 2 00154
                               TXH LOCAN, 2, 4
                                                 COMMA
00210 -0 63400 2 77754
00211 0 02000 0 00166
                               SXD OPER,2
                                                 SAVE REST, WILL BRANCH IN SUB ACCUM
                               TRA LOCAP
                                                 AFTER BOTH OPERANDS HAVE BEEN FOUND.
                                    COMES HERE IF THE OCT OR ALF MODE.
                               TSX CHRCTR,4
00212 0 07400 4 00352 LOCAT
00213
       0 07400 4 00524
                               TSX COMPAR.4
00214
       344621000000
                               BCD 110A000
                               TRA *+5,2
00215
       0 02000 2 00222
       0 02000 0 00161
00216
                               TRA ERRL
                                                 JUNK
00217
       0 02000 0 00262
                               TRA LOCAZ
                                                 A CHARACTER
00220
      0 02000 0 00230
                               TRA LOCAU
                                                 O CHARACTER
                                    COMES HERE IF EMPTY PARENTHESIS WERE FOUND.
                                                 ISIGN, GET NEXT CHARACTER.
MINUS MEANS NEW CARD.
00221
       0 07400 4 00352
                               TSX CHRCTR, 4
       0 12000 0 00224
                               TPL ++2.
00222
00223
       0 07400 4 01377
                               TSX TEST,4
                                                 INSERT COMMA IF NEEDED.
00224
       0 50000 0 77716
                               CLA ILOGI
                               STO ILOC
00225
     0 60100 0 77750
                                                 PREPARE TO GET VALUE CF
00226 -0 53400 2 77721
                                                 CURRENT LEFT SIDE.
                               LXD JK1,2
00227 0 02000 0 00127
                               TRA SET
```

```
COMES HERE IF OCTAL MODE.
       0 07400 4 00352 LOCAU
00230
                              TSX CHRCTR, 4
       0 07400 4 00524
00231
                               TSX COMPAR, 4
00232
       340000000000
                               BCD 1100000
       0 02000 2 00236
00233
                               TRA *+3,2
00234
       0 02000 0 00230
                               TRA LOCAU
                                                OTHERS
00235 0 02000 0 00245
                               TRA LOCAW
                                                ) SIGN
00236 -0 32000 0 00064 LOCAV
                              ANA LOCAF+2
                                                 SAVE ONLY THE OCTAL NUMBER.
00237 0 60100 0 77755
                               STO WORD
00240 0 56000 0 77714
                               LDQ VAR
00241 -0 76300 0 00003
                               LGL 3
                                                USE THE MQ TO ELIMINATE OVERFLOWS.
00242 -0 60000 0 77714
                               STQ VAR
00243 -0 50000 0 77755
                                                ALL NUMBERS MODULO 8.
                               CAL WORD
00244 -0 60200 0 77714
                               ORS VAR
                                   COMES HERE WHEN ) IS FOUND.
00245 0 07400 4 00352 LCCAW
                               TSX CHRCTR, 4
00246
      0 12000 0 00250
                               TPL *+2
00247
       0 07400 4 01377
                               TSX TEST, 4
00250
       0 07400 4 00524
                               TSX COMPAR, 4
       730000000000
00251
                               BCD 1,00000
                               TRA *+5,2,2
00252
       0 02002 2 00257
       0 02000 0 00337
00253
                                                JUNK
                               TRA ERRJ
00254
       0 02000 0 00337
                               TRA ERRJ
                                                ALPHABETIC
00255
       0 02000 0 00236
                               TRA LOCAV
                                                NUMERIC
00256 -0 53400 2 77721 LOCAX
                              LXD JK1,2
                                                COMMA
      0 50000 0 77714
00257
                               CLA VAR
00260
       0 02000 0 00153
                               TRA LOCI
                                                CONVERT THE NUMBER TO BINARY.
00261 0 07400 4 01453 LOCAY TSX BINARY,4
                                   COMES HERE IF ALF MODE.
       0 07400 4 00352 LOCAZ
00262
                              TSX CHRCTR,4
       0 07400 4 00524
                               TSX COMPAR, 4
00263
00264
       3400000000000
                               BCD 1100000
                              TRA *+5,2,2
00265
       0 02002 2 00272
00266
       0 02000 0 00341
                               TRA ERRK
                                                JUNK
       0 02000 0 00262
00267
                               TRA LOCAZ
                                                ALPHABETIC
      0 02000 0 00261
00270
                               TRA LOCAY
                                                NUMERIC
                                   COMES HERE WHEN ) IS FOUND
00271 0 53400 1 77714 LOCBA
                              LXA VAR.1
                                                ) SIGN
00272 -2 00000 1 00341
                               TNX ERRK, 1,0
                                                ALF COUNT WAS ZERO.
00273 -0 63400 1 77741
                               SXD ALF, 1
00274 0 07400 4 00517
                               TSX CLEAR.4
      0 07400 4 00352
00275
                               TSX CHRCTR, 4
                                                PULL THROUGH CHARACTERS AND STORE
      0 07400 4 01216
                               TSX STORE,4
                                                THEM ONE AT A TIME.
00276
00277 2 00001 1 00275
                              TIX #-2,1,1
                                                GO BACK TILL NCHAR IS ONE.
00300 -0 53400 1 77752
                              LXD J,1
00301 -0 53400 4 77751
                              LXD MSHIFT,4
00302 0 56000 0 00636
                              LDQ BLANK
00303 -0 75400 0 00000
                              PXD 0.0
00304 -0 76300 4 00044
                              LGL 36,4
00305 -0 60200 1 77715
                              ORS VAR+1,1
                                                FILL IN PARTIAL WORD WITH BLANKS.
00306 0 53400 4 00303 LOCBB
                              LXA #-3,4
                                                SET INDEX C TO ZERO.
00307 -0 53400 2 77721
                              LXD JK1,2
```

```
00310 0 50000 4 77714 LOCBC CLA VAR.4
                                                 PREPARE TO STORE ALPHABETIC WORDS.
       0 60100 2 00000 LOC4
00311
                               STO **,2
                               TXI *+1,4,1
00312
      1 00001 4 00313
                               PXD 0,4
00313 -0 75400 4 00000
00314
      0 40200 0 77752
                               SUB J
00315
       0 10000 0 00321
                               TZE LOCBD
       1 00001 2 00317
                               TXI *+1,2,1
00316
                                                 JK1 = JK1 + 1
00317 -0 63400 2 77721
                               SXD JK1,2
00320 0 02000 0 00310
                               TRA LOCBC
00321
       0 60000 0 77741 LOCBD
                               STZ ALF
00322
       0 07400 4 00517
                               TSX CLEAR, 4
       0 07400 4 00352
00323
                               TSX CHRCTR,4
                                                 LOOK AT NEXT CHARACTER.
00324
       0 12000 0 00326
                               TPL #+2
00325
       0 07400 4 01377
                               TSX TEST.4
                                                 PUT IN COMMA IF NEEDED.
00326
       0 07400 4 00524
                               TSX COMPAR, 4
00327
       730000000000
                               BCD 1,00000
                               TRA *+3,2,0
00330
       0 02000 2 00333
00331
       0 02000 0 00333
                               TRA ERRB
00332
      0 02000 0 00154
                               TRA LOCAN
                                                 GO RAISE AND STORE JK1.
                                   THESE ARE ERROR CALLS
                               TSX ERROR,4
00333 0 07400 4 00564 ERRB
00334
       607422346060
                               BCD 1 (B)
00335
       0 07400 4 00564 ERRD
                               TSX ERROR,4
00336
       607424346060
                               BCD 1 (D)
       0 07400 4 00564 ERRJ
00337
                               TSX ERROR,4
00340
       607441346060
                               BCD 1 (J)
00341
       0 07400 4 00564 ERRK
                               TSX ERROR, 4
       607442346060
00342
                               BCD 1 (K)
00343
       0 07400 4 00564 ERRM
                               TSX ERROR, 4
00344
       607444346060
                               BCD 1 (M)
                               TSX ERROR,4
BCD 1 (U)
00345
       0 07400 4 00564 ERRU
00346
      607464346060
00347 +000001000000
                               OCT 1000000
                        ONED
                                                PROGRAM
                       DOLLAR BCD 10000$0
00350 000000005300
                                                  CONSTANTS
00351 +000000000001
                       ONEA
                               OCT 1
```

END OF THE SAP MAIN SEGMENT TO INPUT.

THIS IS SUBROUTINE CHRCTR. IT STORES SUCCESSIVE CHARACTERS FROM THE CARD AT LOCATION WORD, READS SUCCESSIVE CARDS INTO THE ARRAY RECORD, AND PRINTS \$\$ TYPE CARDS. THE FIRST CHARACTER FROM A NEW CARD IS STORED IN WORD WITH A MINUS SIGN.

```
00352 -0 53400 1 77736 CHRCTR SXD TEMP+9,1
00353 -0 63400 2 77735
                               SXU TEMP-10,2
00354 -0 03400 4 77726
                               SXD TEMP-17,4
00355 0 30000 0 77742
                               STZ TAG
00356
      0 50000 0 77760
                               CLA I
      0 10000 0 00455
                               TZE LOCCG
00357
                                                I = 0 MEANS READ A CARD
00360 -0 73400 2 00000
                              PDX 0,2
                                                I = I IN INDEX B.
00361 6 56000 0 77756
                                                HAS UNUSED CHARACTERS FROM BEFORE.
                              LCQ Q
00362 -0 53400 1 77757 LOCCA
                                                PICK UP CHARACTER COUNTER OF WORD.
                              LXU KK, 1
00363
      0 53400 4 77743
                               LXA SIGN,4
                                                ZERO UNLESS ON $DATA CARD.
      0 50000 0 77741
00364
                               CLA ALF
00365 -0 10000 0 00367
                               TNZ *+2
                                                ZERO MEANS NO ALPHABETIC.
      1 00001 4 00367
00366
                               TXI #+1,4,1
                               TXI #+1,4,1
                                                C = 2 IF NOT IN ALF MODE.
00367
      1 00001 4 00370
00370 -0 75400 0 00000 LOCCB
                              PXD 0,0
00371 -0 76300 0 00006
                                                ONE CHARACTER FROM MQ TO AC.
                               LGL 6
00372
      1 00001 1 00373
                               TXI *+1,1,1
                                                KK = KK + 1
                                                DONE WITH WORD IF KK OVER 5.
00373 -3 00005 1 00401
                               TXL LOCCC, 1,5
00374 -0 73400 1 00000
                               PDX 0,1
                                                RESET KK TO ZERO.
                               LDG RECORD, 2
60375
      0 56000 2 77776
                               TXI *+1,2,1
00376
      1 00001 2 00377
                                                RAISE I BY ONE.
00377 -3 00014 2 00401
                                                DONE WITH CARD IF I OVER 12.
                               TXL *+2,2,12
00400 -0 73400 2 00000
                               PDX 0,2
                                                RESET I TO ZERO.
00401 -3 00001 4 00417 LOCCC
                              TXL LOCCF, 4, 1
                                                GO STORE CHARACTER IF IN ALF MODE.
00402 0 34000 0 00515
                                                HUNT FOR BLANK.
                               CAS BLDG
00463
      0 02000 0 00405
                               TRA *+2
                                                IS NOT BLANK.
                                                IS BLANK.
00404
       0 02000 0 00415
                               TRA LOCCE
06405
       0 34000 0 00516
                               CAS DOLDG
                                                HUNT FOR $ CHARACTER.
       0 02000 0 00410
00406
                               TRA *+2
                                                IS NOT $ CHARACTER.
00467
       0 02000 0 00411
                               TRA LOCCD
                                                IS $ CHARACTER.
                                                GO STORE THE CHARACTER.
00410
      0 02000 0 00417
                               TRA LOCCF
                                                TWO $ SIGNS MEANS PRINT CARD.
00411
       3 00002 4 06446 LOCCD
                              TXH PRINT, 4,2
       0 76700 0 00006
                                                SAVE THE 1ST $ CHARACTER AT TAG.
00412
                               ALS 6
00413
       0 60100 0 77742
                               STO TAG
00414
       1 00001 4 00415
                               TXI LOCCE, 4, 1
                                                C = C + 1 FOR $ CHARACTER.
       3 00000 2 00370 LOCCE
                                                CONTINUE PROCESSING IF NOT THE
00415
                              TXH LOCCB, 2,0
00416
      0 02000 0 00455
                               TRA LOCCG
                                                END OF THE CARD. OTHERWISE READ
00417 -0 63400 2 77760 LOCCF
                               SXD 1,2
                                                A NEW CARD.
00420 -0 63400 1 77757
                              SXD KK, 1
00421 -0 60000 0 77756
                               STQ Q
                                                SAVE CHARACTERS LEFT IN MQ.
00422 0 56000 0 77743
                              LDQ SIGN
                                                  RETURN
00423 0 40000 0 77742
                              ADD TAG
                                                    TO THE
00424
      0 76300 0 00000
                              LLS 0
                                                      CALLING
      0 60100 0 77755
00425
                               STO WORD
                                                        PROGRAM.
      0 60000 0 77743
00426
                               STZ SIGN
00427 -0 53400 4 77726
                              LXD TEMP-17,4
00430 -0 53400 1 77736
                              LXD TEMP-9,1
00431 -0 53400 2 77735
                               LXD TEMP-10,2
00432 -0 76000 0 00012
                              RTT
                                                IS TAPE CHECK ON.
                                                IF MINUS THIS IS A NEW CARD.
00433 -0 12000 0 00436
                              TMI *+3
00434 0 60000 0 77734
                               STZ RTT
                                                RESET ERROR COUNT.
                              TRA 1,4
00435
      0 02000 4 00001
                                                RETURN TO THE CALLING PROGRAM.
```

```
00436 -0 53400 2 77734
                                LXD RTT,2
                                                   COUNT REREADS.
                                TXL #+3,2,4
TSX ERROR,4
00437 -3 00004 2 00442
00440 0 07400 4 00564
                                                   OVER 5 REREADS.
00441
       607451636334
                                BCD 1 (RTT)
00442
       0 76400 0 00207
                                BST 7
                                                   REREAD THE LAST RECORD (CARD).
                                TXI *+1,2,1
00443 1 00001 2 00444
00444 -0 63400 2 77734
00445 0 02000 0 00454
                                SXD RTI,2
                                TRA LOCCG-1
                                    COMES HERE IF IT IS A $$ CARD
G0446 0 76600 G 00206 PRINT
                                WTD 6
00447 -0 73400 1 00000
00450 0 70000 0 00636
                                PDX 0,1
                                CPY BLANK
00451
       0 70000 1 77776
                                CPY RECORD, 1
00452
       1.00001 1 00453
                                TXI ++1,1,1
00453 -3 00013 1 00451
                                TXL *-2,1,11
00454
       0 60000 0 77742
                                STZ TAG
                                                   INITIALIZE TAG.
00455
       0 60000 0 77757 LOCCG
                                STZ KK
                                                   INITIALIZE KK.
                                LXA PRINT+1,2
00456
       0 53400 2 00447
                                                   SET INDEX TO COPY LOOP AT ZERO.
00457
       0 53400 4 00447
                                LXA PRINT+1,4
00460
       0 76200 0 00207
                                RID 7
                                                  READ A NEW CARD.
00461
       0 70000 2 77776 READ
                                CPY RECORD, 2
       0 02000 0 00470
00462
                                TRA LOCCH
                                                  NORMAL
00463
       0 02000 0 00500
                                TRA LOCCK
                                                  END OF FILE
       0 50000 0 00636
                                                  END OF RECORD
00464
                                CLA BLANK
       3 00013 2 00472
00465
                                TXH LOCCJ, 2, 11
                                                  FILL IN SHORT RECORDS WITH BLANK
00466
       0 60100 2 77776
                                STO RECORD, 2
                                                  WORDS -
00467
       1 00001 2 00465
                                TXI *-2,2,1
00470
       1 00001 2 00471 LOCCH
                                TXI *+1,2,1
00471 -3 00013 2 00461
                                TXL READ, 2, 11
                                                  FINISHED IF INDEX B IS GREATER THAN
00472 -0 53400 2 00401 LOCCJ-
                               LXD LOCCC, 2
                                                  SET I = 1.
                                                                                   11.
00473
       0 50200 0 77757
                                CLS KK
                                                  PICK UP MINUS ZERO.
00474
       0 60100 0 77743
                                STO SIGN
00475
       0 76600 0 00333
                                IOD
00476
       0 56000 0 77776
                                LDQ RECORD
00477
       0 02000 0 00362
                                TRA LOCCA
00500
       0 76600 0 00206 LOCCK
                                WTD 6
                                                  PRINT END OF FILE AND CALL MONITOR.
00501 -0 53400 1 00576
                                LXD FOUR, 1
00502
      0 70000 1 00515
                                CPY OUT+4,1
00503
       2 00001 1 00502
                                TIX *-1,1,1
00504
       0 76200 0 00221 LOCOUT RTB 1
                                                  STANDARD
00505
       0 76000 0 00140
                                SLF
                                                    LEWIS RESEARCH CENTER
00506
       0 70000 0 00000
                                CPY 0
                                                      MONITOR
00507
       0 70000 0 00001
                                CPY 1
                                                        CALLING
00510
       0 02000 0 00000
                                TRA 0
                                                           SEQUENCE.
00511
       602545246046
                        OUT
                                BCD 4 END OF FILE ON TAPE 7.
00512
       266026314325
00513
       604645606321
       472560073360
00514
00515
       000000000000
                        BLDG
                                BCD 100000
00516
       00000000053
                        DOLDG BCD 100000$
```

END OF THE SAP SUBROUTINE CHRCTR.

THIS IS SUBROUTINE CLEAR. IT INITIALIZES NECESSARY PARAMETERS FOR SUBROUTINE STORE.

00517	0 50000	0 00347 CLEAR	CLA ONED		
00520	0 60100	0 7.7752	S10 J	SET J EQUAL TO ONE.	
00521	0 60000	0 77714	STZ VAR	CLEAR VAR(1).	
00522	0 60000	0 77751	STZ MSHIFT	CLEAR MSHIFT.	
00523	0 02000	4 00001	TRA 1,4	RETURN TO CALLING PROGRA	M

END OF THE SAP SUBROUTINE CLEAR.

THIS IS FUNCTION COMPAR. IT EXAMINES THE CURRENT CHARACTER AND TESTS IT AGAINST THE CHARACTERS FOUND IN THE ARGUMENT. ALPHABETIC AND NUMERIC SPLITS ARE MADE IF THE CHARACTER IS NOT FOUND IN THE ARGUMENT. THESE TESTS ARE COUNTED AND THE NUMBER LEFT IN INDEX 2 CORRESPONDS TO THE SUCCESSFUL TEST. IF NO TEST IS SUCCESSFUL THEN INDEX 2 CORRESPONDS TO THE TOTAL TESTS +1.

```
00524 0 56000 4 00001 COMPAR LDQ 1,4
                                                USE FIRST ARGUMENT IN CALLING
00525 -0 50000 0 77755
                              CAL WORD
                                                SEQUENCE AS THE TEST WORD.
00526 0 60100 0 77755
                                                SIGN OF WORD NOW PLUS.
                              STO WORD
      0 53400 2 00351
00527
                              LXA ONEA.2
00530 -0 75400 0 00000 LOCDA PXD 0.0
00531 -0 76300 0 00006
                              LGL 6
                                                PULL IN 1ST TEST CHARACTER.
      0 10000 0 00541
                              TZE LOCDD
                                                DONE IF ZERO.
00532
                                                CHECK TEST WORD AGAINST CARD
      0 34000 0 77755
                              CAS WORD
00533
00534
      1 00001 2 00530
                              TXI LOCDA, 2, 1
                                                CHARACTER.
      0 02000 0 00537
                              TRA LOCDC
                                                EQUAL.
00535
00536
      1 00001 2 00530 LOCDB
                              TXI LOCDA, 2, 1
                                                NOT EQUAL. GET NEXT TEST
00537
      0 50000 0 77755 LOCDC
                              CLA WORD
                                                CHARACTER.
00540
      0 02000 4 00002
                              TRA 2,4
                                                PROGRAM RETURN.
                                                USE SECOND ARGUMENT IN THE CALLING
00541
     0 50000 4 00002 LOCDD
                             .CLA 2,4
                                                SEQUENCE (DECREMENT) AS THE TEST
00542 -0 73400 1 00000
                              PDX 0,1
00543 -2 02000 1 00537
                              TNX LOCDC, 1, 1024 FOR ALPHABETIC-NUMERIC SPLIT.
00544
     0 50000 0 77755
                                                LOOK FOR NUMERIC.
                              CLA WORD
00545 0 40200 0 00562
                              SUB- TENA
00546 -0 12000 0 00537
                              TMI LOCDC
                                                NEGATIVE MEANS NUMERIC.
00547
      0 50000 0 77755 LOCDE
                             CLA WORD
                                                LOOK FOR ALPHABETIC.
00550 0 40200 0 00351
                              SUB ONEA
00551 -0 32000 0 00563
                              ANA MASKI
00552
      0 40200 0 00561
                              SUB NINE
00553
      0 02000 1 00556
                              TRA #+3,1
00554
     0 02000 0 00557
                              TRA LOCOF
00555 -0 12000 0 00537
                              TMI LOCDC
00556
      1 00001 2 00537
                              TXI LOCDC, 2, 1
                                                ADJUST INDEX B ACCORDING
                              TMI *-1
00557 -0 12000 0 00556 LOCDF
                                                TO JUNK OR ALPHABETIC.
00560 1 00002 2 00537
                              TXI LOCDC, 2, 2
00561 +000000000011
                       NINE
                              OCT 11
00562 +000000000012
                       TENA
                              OCT 12
00563 +000000007717
                       MASK 1
                              OCT 7717
```

END OF THE SAP SUBROUTINE COMPAR.

THIS IS SUBROUTINE ERROR. IT IS CALLED IF AN ERROR WAS DETECTED ON ANY OF THE INPUT CARDS. IT EXITS VIA THE LEWIS RESEARCH CENTER MONITOR.

```
0 50000.4 00001 ERROR CLA 1,4
 00564
                                                 GET ARGUMENT FOR PRINTOUT.
 00565
        0 76600 0 00206
                                WID 6
 00566 0 70000 4 00001
                                CPY 1,4
                                                 PRINT TYPE OF ERROR.
 00567 -0 53400 1 00655
                                LXD THREE, 1
                                                 PREPARE TO PRINT SERIES OF BLANKS.
 00570 0 34000 0 00441
                                CAS R
                                                 TEST FOR TYPE SPLIT.
 00571
       1 00001 1 00601
                               TXI LOCEA, 1, 1
 00572
       1 00004 1 00604
                                TXI LOCEA+3,1,4
                                                 (RTT) USES 7 BLANKS.
 00573 -0 32000 0 00654
                                ANA BLOT
                                                 ERROR TYPE WAS GREATER THAN R.
 00574 -0 73400 2 00000 LOCEC
                               PDX 0,2
                                                 SET INDEX FOR =LONG= PRINT.
 00575
       0 70000 2 00655
                               CPY LONG+2,2
                                                 COPY NON-STANDARD PRINTOUT.
 00576 1 00004 2 00577 FOUR
                               TXI *+1,2,4
                                                 INCREMENT BY FOUR.
 00577 -3 00021 2 00575
                               TXL *-2,2,17
                                                 FINISHED IF OVER 17.
 00600 0 02000 0 00604
                                TRA LOCEB
 00601
       0 70000 0 00631 LOCEA
                               CPY LOCED
                                                 ERROR TYPE WAS LESS THAN R.
       0 70000 0 00632
 00602
                               CPY LOCED+1
 00603 0 70000 0 00633
                               CPY LOCED+2
       0 70000 0 00636 LOCEB CPY LONG-13
 00604
                                                 COPY THREE MORE BLANKS.
 00605
       2 00001 1 00604
                               TIX *-1,1,1
                                                 LOOP.
       0 70000 1 77777
80800
                               CPY RECORD+1,1
                                                 COPY THE CARD IMAGE.
00607
       1 00001 1 00610
                               TXI *+1,1,1
 00610 -3 00014 1 00606
                               TXL *-2,1,12
00611 0 76600 0 00333
                               100
00612 0 56000 0 77757
                               LDQ KK
                                                 PREPARE AN INDEX FOR SHIFTING THE
00613 0 20000 0 00655
                               MPY THREE
                                                 ASTERISK. MULTIPLY BY SIX.
00614 0 73400 1 00000
                               PAX 0,1
00615 -0 53400 2 77760
00616 3 00000 1 00620
                               LXD I,2
                               TXH *+2,1,0
       1 77777 2 00620
00617
                               TXI *+1,2,-1
                                                 REDUCE I BY ONE IF KK IS ZERC.
00620
       1 00007 2 00621
                               TXI *+1,2,7
                                                 SET I FOR LOOPING.
00621 0 56000 0 00656
                               LDQ ASTR
00622 -0 77300 1 00044
                               RQL 36,1
                                                 SHIFT ASTERISK.
00623 -0 60000 0 77747
                               STQ TEMP
00624 0 76600 0 00206
                               WTD 6
00625 0 70000 0 00636
                               CPY LONG-13
                                                 COPY A SERIES OF BLANKS.
                               TIX *-1,2,1
00626
       2 00001 2 00625
                                                 LOOP.
00627 0 70000 0 77747
                                                 COPY * SIGN IN PROPER LOCATION.
                               CPY TEMP
00630 0 02000 0 00504
                               TRA LOCOUT
                                                      PROGRAM DATA CONSTANTS.
00631
      314343252721
                        LOCED BCD TILLEGA
00632
       436023302151
                               BCD 1L CHAR
00633
       212363255133
                               BCD 1ACTER.
00634
       253360606060
                               BCD 1F.
00635
       665146452733
                               BCD IWRONG.
00636
       000000000000
                        BLANK
                               BCD 1
00637
       602533606060
                               BCD 1 E.
00640
       266051214527
                               BCD IF RANG
00641
       452760465160
                               BCD ING OR
00642
       632122432533
                               BCD ITABLE.
00643
       222526465125
                               BCD IBEFORE
00644
       604664636046
                               BCD 1 OUT O
00645
       604431626231
                               BCD 1 MISSI
00646
       517060314560
                               BCD IRY IN
00647
      633162622160
                               BCD ITISSA
00650
       256747464533
                               BCD 1EXPON.
00651
       536063704725
                               BCD 1$ TYPE
00652 454660254563
                               BCD ING ENT
```

```
00653 454660442145
                       LCNG
                              BCD INC MAN
00654 +000007000000
                       BLOT
                              OCT 7000000
                              OCT 3000001
00655 +000003000001
                       THREE
                       ASTR
                              BCD 1
00656 606060606054
```

00713 +377777000000

END OF THE SAP SUBROUTINE ERROR.

THIS IS SUBROUTINE LOOK. IT SEARCHES THE TABLE FOR THE NAME STORED AT LOCATION VAR. IF FOUND, THE ACC IS NON-ZERO AT THE RETURN.

```
SXD TEMP-12,4
                                                 SAVE INDEX REGISTER C.
00657 -0 63400 4 77733 LOOK
                                                SUBROUTINE.
                               CLA J
00660 0 50000 0 77752
       0 62200 0 00705
                               STD LOCFE
00661
       0 53400 2 00351
                               LXA ONEA,2
                                                 JK = 1 IN INDEX B.
00662
     0 53400 1 00351
                               LXA ONEA, 1
                                                J1 = 1 IN INDEX A.
00663
                                                CAL TABV(JK).
00664 -0 50000 2 00000 LOCFA
                              CAL **,2
TNZ *+2
                                                 IF ZERO, NO ENTRY WAS FOUND FOR
00665 -0 10000 0 00667
                                                 THIS VARIABLE. EXIT WITH ZERO IN
00666 0 02000 0 00711
                               TRA LOCFG
                                                 INDEX B. DECREMENT HAS NEXT
                               STD LOCFD
00667 0 62200 0 00702
                                                ENTRY LOCATION. SAVE THE DECREMENT
00670 -0 32000 0 00713
                               ANA MASK2
                                                         CHECK ENTRY LENGTH.
00671 0 40200 0 77752
                               SUB J
                                                ONLY.
                               SUB ONED
00672 0 40200 0 00347
                                                IF NOT THE SAME, LOOK AT NEXT ENTRY.
                               TNZ LOCFD
00673 -0 10000 0 00702
00674 -0 75400 2 00000
                               PXD 0,2
00675 -0 73400 4 00000
                               PDX 0,4
                                                 JM = JK IN INDEX C.
00676 0 50000 1 77715 LOCFB
                                                 SEE IF VAR AND THIS
                               CLA VAR+1,1
                                                 ENTRY AGREE.
                               CAS **,4
00677 0 34000 4 00000 LOCFC
                                                 IF NOT SO, GO TO NEXT ENTRY.
00700
      0 02000 0 00702
                               TRA LOCFD
       0 02000 0 00703
                                                 IF SO, CHECK REST OF NAME.
                               TRA *+2
00701
                                                   IF NOT SO, GO TO NEXT ENTRY.
                               TXI LOCFA-1,2,**
       1 00000 2 00663 LOCFD
00702
                                                RAISE JM BY ONE.
00703
       1 00001 4 00704
                               TXI *+1,4,1
                                                RAISE J1 BY ONE. FINISHED IF J1 IS GREATER THAN J.
                               TXI *+1,1,1
      1 00001 1 00705
00704
00705 -3 00000 1 00676 LOCFE
                               TXL LOCFB, 1, **
                                                 CLEAR IF THE ENTRY AGREES.
                               TSX CLEAR,4
00706
      0 07400 4 00517
       0 50000 2 00000 LOCFF
                               CLA **,2
00707
                               STO ILOC
                                                 SAVE COMMON INDEX AT ILOC.
00710 0 60100 0 77750
                                                 PREPARE TO RETURN.
00711 -0 53400 4 77733 LOCFG
                              LXD TEMP-12,4
                                                 RETURN TO THE CALLING PROGRAM.
00712 0 02000 4 00001
                               TRA 1,4
                        MASK2 OCT 377777000000
```

END OF THE SAP SUBROUTINE LOCK.

To the little was being

THIS IS SUBROUTINE NAME. IT IS USED TO CORRELATE NAMES FROM INPUT CARDS WITH INTERNAL MEMORY LOCATIONS BY REFERRING TO THE TABLE.

```
SXD TEMP-20,4
00714 -0 63400 4 77723 NAME
                                                 SAVE INDEX C.
                                    GET THE REST OF THE VARIABLE NAME. STOP AT ANY
                                   NON ALPHANUMERIC CHARACTER.
00715 0 07400 4 01216 LOCGB
                               TSX STORE, 4
       0 07400 4 00352 LOCGC
00716
                               TSX CHRCTR, 4
00717
       0 12000 0 00721
                               TPL *+2
00720 0 07400 4 01377
                               TSX TEST,4
                                                 COMMA MAY BE NEEDED.
00721 -0 10000 0 00724
                               TNZ ++3
                                                 LOOK FOR ZERO. IF ZERO, MAKE IT
00722 0 36100 0 00776
                               ACL OH
                                                 A LETTER O.
00723
      0 60100 0 77755
                               STO WORD
00724
       0 07400 4 00524 LOCGE
                               TSX COMPAR,4
00725
       611374000000
                               BCD 1/=(000
       0 02001 2 00734
00726
                               TRA *+6,2,1
       0 02000 0 00733
00727
                               TRA LOCGF
                                                 JUNK OR OPERATORS
00730
       0 02000 0 00715
                               TRA LOCGB
                                                 NUMERIC OR ALPHABETIC
00731
       0 02000 0 00737
                               TRA LOCGG
                                                 1 SIGN
      0 60000 0 77716
00732
                               STZ ILOC1
                                                 = SIGN
                                   GO TO THE TABLE LOOKUP ROUTINE IF AN = SIGN
                                     OR AN OPERATOR WAS FOUND.
00733
       0 07400 4 00657 LOCGF
                               TSX LOOK,4
                                                 FIND THE NAME IN TABLE.
00734
       0 10000 0 00741
                               TZE ERRT
                                                 NAME WAS FOUND IN TABLE IF NON-ZERO.
00735
       0 53400 2 77750
                               LXA ILOC, 2
00736
      0 02000 0 00770
                               TRA LOCGL
                                   GO TO THE TABLE VARIABLE LOOKUP ROUTINE IF A
                                   ( SIGN WAS FOUND.
00737 0 07400 4 00657 LOCGG
                               TSX LOOK, 4
00740 -0 10000 0 00744
                               TNZ LOCGJ
00741 0 07400 4 00564 ERRT
                               TSX ERROR,4
00742
      607463346060
                               BCD 1 (T)
                                   CONVERT THE INDEX TO BINARY.
00743 0 07400 4 01453 LOCGH
                               TSX BINARY,4
                                   GET THE NUMERICS FOR THE INDEX TO THE VARIABLE.
       0 07400 4 00352 LOCGJ
00744
                               TSX CHRCTR,4
       0 07400 4 00524
00745
                               TSX COMPAR, 4
00746
       340000000000
                               BCD 1100000
00747
                               TRA *+5,2,2
       0 02002 2 00754
      0 02000 0 00774
0 02000 0 00774
00750
                               TRA ERRC
                                                 JUNK
00751
                               TRA ERRC
                                                 ALPHABETIC
00752
       0 02000 0 00743
                               TRA LOCGH
                                                 NUMERIC
                                                 ) SIGN. GET NEXT CHARACTER. MINUS MEANS FROM NEW CARD.
00753
       0 07400 4 00352
                               TSX CHRCTR,4
       0 12000 0 00756
00754
                               TPL *+2
00755
       0 07400 4 01377
                               TSX TEST, 4
                                                 COMMA MAYBE NEEDED.
      0 07400 4 00524
00756
                               TSX COMPAR, 4
00757 611300000000
                               BCD 1/=0000
00760
       0 02001 2 00765
                               TRA *+5,2,1
00761
       0 02000 0 00764
                               TRA LOCGK
                                                 OPERATORS
       0 02000 0 00161
                               TRA ERRL
00762
                                                 ALPHABETIC AND NUMERIC
00763
       0 60000 0 77716
                               STZ ILOC1
       0 50000 C 77714 LOCGK CLA VAR
00764
                                                 COMPUTE STORING INDEX.
00765
       0 40200 0 00351
                               SUB ONEA
00766
       0 40100 0 77750
                               ADM ILOC
```

```
00767 0 73400 2 00000
                                PAX 0,2.
                                                  STORE ADDRESS AT DECREMENT WITHOUT
00770 -0 63400 2 77737 LOCGL
                                SXD JK,2
                                                  ACCUMULATOR OVERFLOW.
00771 0 50000 0 77716
                                CLA ILOCI
00772 -0 53400 4 77723
00773 0 02000 4 00001
                                LXD TEMP-20,4
                                                  RESTORE INDEX C.
                                TRA 1,4
                                                  RETURN TO CALLING PROGRAM.
                                        CONSTANTS AND ERROR CALL.
00774 0 07400 4 00564 ERRC
                                TSX ERROR,4
00775
       607423346060
                                BCD 1 (C)
      000000000046
00776
                        0H
                                BCD 1000000
                                                  5 ZEROS AND ONE O
```

END OF THE SAP SUBROUTINE NAME.

THIS IS SUBROUTINE NUMBER. IT IS USED TO ASSEMBLE NUMERIC DATA FROM CARDS. ALL VALUES ARE TREATED AS FLOATING POINT NUMBERS IN THIS ROUTINE.

```
00777 -0 63400 4 77720 NUMBER SXD TEMP-23,4
                                                 SAVE INDEX C.
01000 -0 63400 4 77745
                               SXD KNT2,4
                                                 INITIALIZE
01001
       0 60000 0 77744
                               STZ KNT3
                                                   THE SUBROUTINE
01002
       0 60000 0 77746
                               STZ KNT1
                                                     BRANCH PARAMETERS.
01003
       0 60000 0 77715
                               STZ KNT4
01004
       0 60000 0 77747
                               STZ TEMP
       0 50000 0 01214
01005
                               CLA LOCHR
                                                 INITIALIZE THE TRANSFER AT LOCHD TO
01006
       0 62100 0 01035
                               STA LOCHD
                                                 LOCHDI.
01007
       0 02000 0 01013
                               TRA LOCHB
01010
       0 07400 4 00352 LOCHA
                               TSX CHRCTR, 4
01011
       0 12000 0 01013
                               TPL LOCHB
01012
       0 07400 4 01377
                               TSX TEST, 4
       0 07400 4 00524 LOCHB
01013
                               TSX COMPAR, 4
01014
       332561000000
                               BCD 1.E/000
01015
       0 02002 2 01024
                               TRA *+7,2,2
01016
       0 02000 0 01113
                               TRA LOCHK
                                                 JUNK OR AN OPERATOR
01017
       0 02000 0 01174
                               TRA ERRE
                                                 ALPHABETIC
01020
      0 02000 0 01032
                               TRA LOCHC
                                                NUMERIC
01021
       0 02000 0 01113
                               TRA LOCHK
                                                 SLASH
01022
       0 02000 0 01050
                               TRA LOCHE
01023 0 50000 0 77745
                               CLA KNT2
                                                DECIMAL POINT.
01024 -0 10000 0 01027
                               TN7 *+3
                                                 ZERO MEANS THIS IS THE SECOND POINT.
01025
      0 07400 4 00564
                               TSX ERROR, 4
      607445346060 N
01026
                               BCD 1 (N)
01027
       0 60000 0 77745
                               STZ KNT2
01030
       0 60000 0 77753
                               STZ NEXP
01031
      0 02000 0 01010
                               TRA LOCHA
       0 50000 0 77753 LOCHC
01032
                               CLA NEXP
                                                COUNT THE NUMBER OF DIGITS BEHIND
01033
       0 40000 0 00351
                               ADD ONEA
                                                THE DECIMAL POINT IF THERE IS ONE.
01034
       0 60100 0 77753
                               STO NEXP
01035
       0 02000 0 00000 LOCHD TRA **
                                                EITHER LOCHD1 OR LOCHD2.
01036
       0 07400 4 01453 LOCHD1 TSX BINARY,4
                                                CONVERT THE DIGIT TO BINARY.
01037
       0 10000 0 01010
                               TZE LOCHA
                                                DO NOT COUNT LEADING ZEROS.
       0 50000 0 77746 LOCHD2 CLA KNT1
01040
                                                COUNT THE TOTAL NUMBER OF DIGITS.
       0 40000 0 00351
01041
                               ADD ONEA
01042 0 60100 0 77746
                              STO KNT1
```

```
01043 0 40200 0 00562
                               SUB TENA
01044 -0 10000 0 01010
                               TNZ LOCHA
01045 0 50000 0 01215
                               CLA LOCHS
                                                PULL THROUGH REMAINING DIGITS.
       0 62100 0 01035
01046
                                                TURN OFF ACCUMALATION OF DIGITS.
                               STA LOCHD
01047
       0 02000 0 01010
                               TRA LOCHA
                                   COMES HERE WHEN THE EXPONENT FIELD IS
ENCOUNTERED.
                               CLA KNT1
                               TNZ LOCHH
                                                THERE MUST BE AT LEAST ONE DIGIT
01052
       0 07400 4 00564
                                                BEFORE THE E OF AN E FORMAT NUMBER.
                               TSX ERROR, 4
01053
       607462346060
                               BCD 1 (S)
       0 50000 0 77744 LOCHF
01054
                               CLA KNT3
                                                SEE IE EXPONENT DIGITS HAVE ARRIVED.
01055
       0 02000 0 01057
                               TRA *+2
       0 50200 0 77744 LOCHG
01056
                               CLS KNT3
                                                SEE IF EXPONENT DIGITS HAVE ARRIVED.
                                                NON ZERO MEANS SIGN IS OPERATOR.
01057 -0 10000 0 01111
                               TNZ LOCHK-2
01060 0 60100 0 77747
                               STO TEMP
                                                STORE SIGN OF EXPONENT.
      0 50000 0 77715
01061
                               CLA KNT4
01062 -0 10000 0 01176
                               TNZ ERRF
                                                NONZERO MEANS MORE THAN 1 EXP SIGN.
01063 -0 63400 2 77715
                               SXD KNT4,2
                                                MAKE NOZERO.
01064
       0 07400 4 00352 LOCHH
                               TSX CHRCTR, 4
01065
       0 12000 0 01067
                               TPL *+2
       0 07400 4 01377
01066
                               TSX TEST,4
01067
       0 07400 4 00524
                               TSX COMPAR, 4
01070
       204061330000
                               BCD 1+-/.00
                               TRA *+8,2,2
       0 02002 2 01101
01071
01072
       0 02000 0 01111
                               TRA LOCHK-2
                                                OTHERS
01073
       0 02000 0 01176
                               TRA ERRF
                                                ALPHABÉTIC
01074
       0 02000 0 01101
                               TRA LOCHJ
                                                NUMERIC
       0 02000 0 01176
                               TRA ERRF
01075
                                                DECIMAL
01076
       0 02000 0 01111
                               TRA LOCHK-2
                                                SLASH
       0.02000 0 01056
                               TRA LOCHG
01077
                                                MINUS
01100
       0 02000 0 01054
                               TRA LOCHF
                                                PLUS
                                   CONVERT THE EXPONENT TO BINARY.
01101
       0 50000 0 77747 LOCHJ
                              CLA TEMP
01102
       0 76700 0 00002
                              ALS 2
       0 40000 0 77747
01103
                               ADD TEMP
01104
       0 76700 0 00001
                               ALS 1
       0 36100 0 77755
                               ACL WORD
01105
01106
       0 60100 0 77747
                               STO TEMP
01107 -0 63400 2 77744
                               SXD KNT3,2
                                                RECORD FACT FOR SECOND SIGN.
01110 0 02000 0 01064
                               TRA LOCHH
                                   COMES HERE WHEN AN OPERATOR WAS FOUND.
                                              TEST FOR THE PRESENCE OF EXPONENT.
       0 50000 0 77744
01111
                              CLA KNT3
       0 10000 0 01176
                                                ZERO MEANS NO EXPONENT CAME.
01112
                              TZE ERRF
01113
         50000 0 77745 LOCHK
       0
                              CLA KNT2
01114
       0 10000 0 01116
                              T7E *+2
       0 60000 0 77753
01115
                              STZ NEXP
01116
       0 50000 0 77746
                              CLA KNT1
                                                SEE IF MORE THAN TEN NUMBERS HAVE
01117
       0 40200 0 00562
                              SUB TENA
                                                BEEN CONVERTED.
       0 12000 0 01122
01120
                              TPL *+2
                                                IF SO, USE THE DIFFERENCE IN THE
01121 -0 75400 0 00000
                              PXD 0,0
                                                COMPUTATION OF THE EXPONENT.
       0 40200 0 77753
01122
                              SUB NEXP
01123
       0 40000 0 77747
                              ADD TEMP
      0 60100 0 77753
01124
                              STO NEXP
                                  MANTISSA IN VAR AND THE EXPONENT IS IN NEXP.
01125
       0 50000 0 77714
                              CLA VAR
       0 10000 0 01172
01126
                              TZE LOCHQ
                                                SHORT CUT IF ZERO.
01127
       0 62100 0 01203
                              STA KI
                              ARS 15
01130
      0 77100 0 00017
01131 -0 50100 0 01204
                              ORA K2
01132 0 30000 0 01204
                              FAD K2
```

```
0 60100 0 77714
                               STO VAR
01133
       0 76000 0 00000
01134
                               CLM
01135 -0 50100 0 01203
                               ORA K1
01136
      0 30000 0 77714
                               FAD VAR
01137 -0 77300 0 00010
                               RQL 8
01140 0 76000 0 00010
                               RND
01141 -0 50100 0 01205
                               ORA K3
01142
      0 60100 0 77714
                               STO VAR
       0 50000 0 77753
01143
                               CLA NEXP
01144
       0 10000 0 01171
                               TZE LOCHP
                                                 IF ZERO, NO EXPONENT COMPUTATION
01145 -0 53400 2 00347
                               LXD ONED.2
                                                 NECESSARY.
01146
       0 56000 0 01202
                                                 PUT A ONE IN THE MQ.
                               LDQ FLOAT1
01147
       0 76000 0 00001 LOCHL
                               LBT
                                                 EXPONENT IS IN ACCUMULATOR.
01150
       0 02000 0 01157
                               TRA LOCHM
       3 00006 2 01200
                               TXH ERRV, 2,6
01151
                                                 EXPONENT GREATER THAN 64
       0 60100 0 77711
01152
                               STO VAR-3
                               FMP TAB+1,2
01153
       0 26000 2 01214
                                                 COMPUTE POWERS OF TEN.
01154
       0 60100 0 77712
                               STO VAR-2
01155
       0 56000 0 77712
                               LDQ VAR-2
01156
       0 50000 0 77711
                               CLA VAR-3
01157
       0 77100 0 00001 LOCHM
                               ARS 1
                                                 CHECK NEXT BIT OF EXPONENT.
01160
       0 10000 0 01162
                               TZE LOCHN
01161
       1 00001 2 01147
                               TXI LOCHL, 2, 1
01162 -0 12000 0 01165 LOCHN
                               TMI LOCHO
                                                 IF NEGATIVE, PERFORM DIVISION.
01163
      0 26000 0 77714
                               FMP VAR
                                                 IF POSITIVE, PERFORM MULTIPLICATION.
01164
      0 02000 0 01172
                               TRA LOCHQ
01165 -0 60000 0 77712 LOCHO
                               STQ VAR-2
01166
      0 50000 0 77714
                               CLA VAR
       0 24100 0 77712
01167
                               FDP VAR-2
01170 -0 60000 0 77714
                               STO VAR
01171 0 50000 0 77714 LOCHP
                               CLA VAR
01172 -0 53400 4 77720 LOCHQ
                               LXD TEMP-23,4
                                                RESTORE INDEX C.
01173 0 02000 4 00001
                               TRA 1,4
                                                 RETURN TO CALLING PROGRAM.
                                   THESE ARE THE ERROR CALLS FOR SUB NUMBR.
01174
       0 07400 4 00564 ERRE
                               TSX ERROR, 4
       607425346060
01175
                               BCD 1 (E)
       0 07400 4 00564 ERRF
                               TSX ERROR, 4
01176
01177
       607426346060
                               BCD 1 (F)
01200 0 07400 4 00564 ERRV
                               TSX ERROR, 4
01201 607465346060
                               BCD-1 (V)
01202 +201400000000
                        FLOATI DEC 1.
                                   THESE ARE THE OCTAL CONSTANTS TO BE USED WITH
                               OCT 233000000000
01203 +233000000000
                        K 1
                                                            THE DBC ROUTINE.
01204 +252000000000
                        Κ2
                               OCT 252000000000
01205 +000400000000
                               OCT 400000000
                                   THIS IS THE FLOATING PT. TABLE USED IN DBC
01206 +353473426555
                               DEC 1E+32
                                                            CONVERSION.
01207 +266434157116
                               DEC 1E+16
01210 +233575360400
                               DEC 1E+08
01211 +216470400000
                               DEC 1E+04
01212 +207620000000
                               DEC 1E+02
01213 +204500000000
                        TAB
                               DEC 10.
                              HTR LOCHD1
01214 0 00000 0 01036 LOCHR
01215 0 00000 0 01040 LOCHS
                              HTR LOCHD2
```

END OF THE SAP SUBROUTINE NUMBER.

THIS IS SUBROUTINE STORE. IT STORES CHARACTERS AT THE ARRAY VAR.

```
01216 -0 63400 1 77732 STORE SXD TEMP-13,1
                                                        SAVE INDEX A. SAVE INDEX B.
01217 -0 63400 2 77731
                                    SXD TEMP-14,2
01220 -0 53400 1 77752
                                    LXD J,1
                                                        PUT J INTO INDEX REGISTER A.
01221 -0 53400 2 77751 LOCJA
                                                        LOAD INDEX B WITH MSHIFT.
RESET MSHIFT IF IT IS OVER 30.
                                    LXD MSHIFT, 2
01222 -3 00036 2 01227
                                    TXL LOCJB, 2, 30
01223 0 60000 0 77751
                                    STZ MSHIFT
       1 00001 1 01225
01224
                                    TXI *+1,1,1
                                                        RAISE J BY ONE IF MSHIFT IS OVER
01225 0 60000 1 77715
                                    STZ VAR+1,1
                                                        MAXIMUM_
01226
        0 02000 0 01221
                                    TRA LOCJA
01227 0 56000 0 77755 LOCJB
                                   LDQ WORD
                                                        PUT WORD IN MQ TO BE SHIFTED.
01230 -0 77300 2 00036
01231 -0 60000 0 77740
                                    RQL 30,2
                                                        SHIFT WORD THE CORRECT NUMBER OF
                                    STQ TEMP-7
CAL TEMP-7
                                                        PLACES TO THE LEFT.
01232 -0 50000 0 77740
01233 -0 60200 1 77715
01234 1 00006 2 01235
                                    ORS VAR+1,1
                                                        STORE THE CHARACTER AT VAR.
                                    TXI *+1,2,6
                                                        RAISE MSHIFT BY SIX.
01235 -0 63400 2 77751
                                    SXD MSHIFT,2
                                                        SAVE MSHIFT.
01236 -0 63400 1 77752
01237 -0 53400 1 77732
                                    SXD J,1
                                                        SAVE J.
                                                        RESTORE INDEX A. RESTORE INDEX B.
                                    LXD TEMP-13,1
01240 -0 53400 2 77731
01241 0 02000 4 00001
                                    LXD TEMP-14,2
                                    TRA 1,4
                                                        RETURN TO CALLING PROGRAM.
```

END OF THE SAP SUBROUTINE STORE.

THIS IS SUBROUTINE TABLE. IT IS USED TO CONSTRUCT A TABLE OF NAMES TO BE USED ON CARDS AND THEIR MEMORY LOCATIONS RELATIVE TO ARG 2 OF THE CALLING SEQUENCE.

01243 0 50 01244 0 62 01245 0 62 01246 0 62 01247 0 62 01250 0 62	3400 4 0000 0 2100 0 2100 0 2100 0 2100 0 2100 0	01343 01352 01370 01371 01355	SXD TEMP-15,4 CLA LOCFF STA LOCKL STA LOCKN STA LOCKS-1 STA LOCKS STA LOCKS STA LOCKO	SAVE INDEX C. INITIALIZE ADDRESSES TO 3RD ARG + 1.
	0000 0		CLA ONED STO J	INITIALIZE J FOR TABLE LOOKUP.
01254 0 50	0000 0	01263	CLA LOCKA+2 STO VAR	GIVE IT AN IMPOSSIBLE WORD.
01256 0 07	400 4	00657	TSX LOOK,4	NO MATCH FOR IMPOSSIBLE WORD IN
01257 -0 63 01260 0 60	1000 0		SXD TEMP-16,2 STZ TEMP	THE TABLE GIVES NEXT FREE LOCATION.
	400 4		TSX CHRCTR,4 TSX COMPAR,4	
	000000		BCD 1,00000	
	002 2		TRA *+5,2,2	
	0000		TRA LOCKD+1	JUNK
	000 0		TRA LOCKA TRA LOCKD+1	ALPHABETIC NUMERIC
			STZ TEMP	COMMA
01271 0 02	000 0	01300	TRA LOCKD	

```
COMES HERE TO CONVERT THE ADDRESS TO OCTAL FOR
                              CLA TEMP
       0 50000 0 77747 LOCKC
                                                 THE TABLE.
01273
       0 76700 0 00002
                               ALS 2
01274
       0 40000 0 77747
                               ADD TEMP
01275
       0 76700 0 00001
                               ALS 1
       0 40000 0 77755
01276
                               ADD WORD
       0 60100 0 77747
01277
                               STO TEMP
                                   COMES HERE TO GET NUMERICS.
01300
       0 07400 4 00352 LOCKD
                               TSX CHRCTR,4
01301
       0 07400 4 00524
                               TSX COMPAR, 4
01302
       331361000000
                               BCD 1.=/000
01303
       0 02002 2 01312
                               TRA *+7,2,2
01304
       0 02000 0 01373
                               TRA ERRA
                                                 JUNK
01305
       0 02000 0 01373
                               TRA ERRA
                                                 ALPHABETIC
01306
       0 02000 0 01272
                               TRA LOCKC
                                                NUMERIC
01307
       0 02000 0 01365
                               TRA LOCKQ
                                                 / CHARACTER
01310 0 02000 0 01315
                               TRA LOCKF
                                                 = SIGN
                                   COMES HERE IF A DECIMAL PT WAS FOUND.
01311 0 50000 0 77747 LOCKE
                               CLA TEMP
                                                DECIMAL PT
01312 -0 76000 0 00003
                               SSM
01313 0 60100 0 77747
                               STO TEMP
01314
      0 02000 0 01300
                               TRA LOCKD
                                   COMES HERE IF AN = SIGN WAS FOUND.
01315 0 07400 4 00517 LOCKF
                               TSX CLEAR, 4
01316
       0 07400 4 00352 LOCKG
                              TSX CHRCTR,4
       0 12000 0 01321
                               TPL *+2
       0 07400 4 01377
01320
                               TSX TEST,4
01321
       0 10000 0 01332
                               TZE LOCKH
01322
       0 07400 4 00524
                               TSX COMPAR.4
01323
      617300000000
                               BCD 1/,0000
       0 02001 2 01331
                               TRA *+5,2,1
01324
01325
      0 02000 0 01375
                               TRA ERRG
                                                JUNK
01326 0 02000 0 01334
                               TRA LOCKJ
                                                ALPHABETIC OR NUMERIC
01327 -0 63400 2 77753
01330 -0 63400 2 77753
                               SXD 8,2
                                                COMMA
                               SXD B,2
                                                SLASH
01331 0 02000 0 01336
                               TRA LOCKK
                                   COMES HERE TO STORE CHARACTER.
      0 36100 0 00776 LOCKH
01332
                               ACL OH
                                                REPLACE ZERO BY CHARACTER O.
01333
       0 60100 0 77755
                               STO WORD
      0 07400 4 01216 LOCKJ
01334
                               TSX STORE, 4
01335 0 02000 0 01316
                               TRA LOCKG
                                   COMES HERE AT END OF NAME.
01336 0 07400 4 00657 LOCKK
                              TSX LOOK,4
01337 -0 10000 0 01367
01340 -0 53400 1 77727
                               TNZ LOCKR
                                                GOES TO LOCKR IF THERE IS AN ENTRY
                                                EQUAL.
                               LXD TEMP-16,1
01341 -0 53400 4 77727
                               LXD TEMP-16,4
CLA TEMP
                               STO **,1
                                                STORE THE NAME IN THE TABLE.
01344 1 00001 1 01345
                               TXI *+1,1,1
01345 -0 53400 2 00347
                              LXD ONED, 2
01346 0 50000 2 77715 LOCKM CLA VAR+1,2
01347 0 60100 1 00000
                               STO **,1
01350 1 00001 1 01351
                               TXI *+1,1,1
01351 -0 63400 1 77727
                               SXD TEMP-16,1
01352 0 60000 1 00000 LOCKN STZ **,1
```

```
01353 1 00001 2 01354
                             TXI *+1,2,1
                             PXD 0,2
01354 -0 75400 2 00000
01355 0 62200 4 00000 LOCKO
                             STD **,4
01356 0 40200 0 77752
                             SUB J
01357 0 40200 0 00347
                             SUB ONED
01360 0 10000 0 01362
                             TZE LOCKP
01361 -0 12000 0 01346
                             TMI LOCKM
                                 REEXAMINE THE CUT OFF CHARACTER.
01362 -0 53400 2 77753 LOCKP
                             LXD B,2
01363 0 02000 2 01366
                             TRA *+3,2
01364 0 02000 0 01270
                             TRA LOCKB
                                             COMMA
                                             / CHARACTER
01365 -0 53400 4 77730 LOCKQ
                             LXD TEMP-15,4
01366 .0 02000 4 00001
                             TRA 1,4
                                             RETURN.
                                 COMES HERE TO REPLACE NAME
01367 -0 50000 0 77747 LOCKR
                             CAL TEMP
STP **,2
                             STA **,2
                             TRA LOCKP
01372 0 02000 0 01362
                                 THESE ARE THE ERROR CALLS.
01373 0 07400 4 00564 ERRA
                             TSX ERROR,4
01374
      607421346060
                             BCD 1 (A)
01375 0 07400 4 00564 ERRG
                             TSX ERROR,4
01376 607427346060
                             BCD 1 (G)
```

END OF THE SAP SUBROUTINE TABLE

THIS IS SUBROUTINE TEST. IT LOOKS AHEAD TO CLASSIFY A NEW CARD. ACOMMA WILL BE PUT INTO THE CURRENT CHARACTER POSITION ONLY IF EITHER (1) THE NEXT CARD BEGINS WITH A \$ SIGN FOLLOWED BY SOME OTHER CHARACTER OR (2) THE NEXT CARD BEGINS WITH AN ALPHABETIC AND AN = SIGN IS FOUND AND IT PRECEEDS ALL, AND \$ SIGNS ON THAT CARD.

```
01377 -0 63400 4 77733 TEST
                               SXD TEMP-12,4
                                                 SAVE INDEX FOR RETURN.
01400 0 40000 0 00350
                               ADD DOLLAR
                                                 TEST FOR A $ SIGN.
01401 -0 12000 0 01440
                               TMI LOCLA
                                                 POSITIVE MEANS NOT A $ SIGN.
      0 07400 4 00524
01402
                               TSX COMPAR,4
                                                 IS THIS CHARACTER ALPHABETIC.
       00000000000
01403
                               BCD 1000000
01404
       0 02002 2 01410
                               TRA #+4,2,2
01405
       0 02000 0 01447
                               TRA LOCLB
                                                 OTHERS
       0 02000 0 01410
01406
                               TRA LOCLC
                                                 ALPHABETIC AND /
01407
       0 02000 0 01447
                               TRA LOCLB
                                                 NUMERIC
01410
       0 53400 1 01414 LOCLC
                               LXA LOCLD, 1
                                                 THE CHARACTER WAS NOT A $ SIGN.
01411
       3 00013
               1 01447
                               TXH LOCLB, 1, 11
                                                 DONE IF WHOLE CARD SCANNED.
01412
       0 56000
               1 77776
                               LDQ RECORD, 1
01413
      0 53400 2 01414
                               LXA LOCLD, 2
01414 -U 75400 0 00000 LOCLD
                               PXD 0.0
01415 -0 76300 0 00006
                               LGL 6
01416 -0 60000 0 77725
                               STQ TEMP-18
01417 -0 10000 0 01424
                               TNZ LOCLE
01420 -0 50000 0 77725
                               CAL TEMP-18
                                                 SEE IF REST OF MQ IS ZERO.
01421 -0 10000 0 01414
                               TNZ LOCLD
                                                 GET NEXT CHARACTER IF MQ IS NOT
01422
      0 50000 0 77755
                               CLA WORD
                                                                            ZERO.
01423
       1 00001 1 01411
                               TXI LOCLC+1,1,1
01424
       0 56000 0 01452 LOCLE
                               LDQ TST1
01425
      0 60100 0 77724
                               STO TEMP-19
01426 -0 75400 0 00000 LOCLF
                               PXD 0,0
01427 -0 76300 0 00006
                               LGL 6
01430 -0 10000 0 01433
                               TNZ LOCLG
01431
      0 56000 0 77725
                               LDQ TEMP-18
01432
       0 02000 0 01413
                               TRA LOCLD-1
01433
       0 34000 0 77724 LOCLG
                               CAS TEMP-19
       0 02000 0 01436
01434
                               TRA LOCLH
01435
       0 02000 0 01437
                               TRA LOCLJ
01436
      1 00001 2 01426 LOCLH
                               TXI LOCLF, 2, 1
01437 -3 00001 2 01447 LOCLJ
                               TXL LOCLB, 2, 1
01440 0 60000 0 77757 LOCLA
                               STZ KK
01441 -0 53400 1 01423
                               LXD LOCLE-1,1
01442 -0 63400 1 77760
                               SXD I,1
01443
       0 50000 0 77776
                               CLA RECORD
01444
       0 60100 0 77756
                               STO Q
01445
       0 50000 0 01451
                               CLA COMMA
                                                 SUBSTITUTE A COMMA IF NEEDED.
01446
       0 60100 0 77755
                               STO WORD
01447 -0 53400 4 77733 LOCLB
                              LXD TEMP-12,4
01450
       0 02000 4 00001
                               TRA 1,4
                                                RETURN TO THE CALLING PROGRAM.
                        COMMA BCD 100000,
01451
       000000000073
01452
       735313000000
                        TSTI
                               BCD 1,$=000
```

END OF THE SAP SUBROUTINE TEST.

THE FOLLOWING FOUR SUBROUTINES ARE USED TO CONVERT DECIMAL DIGITS TO BINARY IN VAR, FIX FLOATING POINT NUMBERS, FLOAT FIXED POINT NUMBERS, AND FORM ARITHMETIC RESULTS IN THE PSEUDO ACCUMULATOR (ACC) FOR EACH OPERATION ON A CARD.

```
0 50000 0 77714 BINARY CLA VAR
 01453
                                                  ACCUMULATE A SERIES OF BASE 10
 01454
        0 76700 0 00002
                                ALS 2
                                                  DIGITS IN BINARY IN VAR.
        0 40000 0 77714
 01455
                                ADD VAR
 01456
        0 76700 0 00001
                                ALS I
        0 36100 0 77755
 01457
                                ACL WORD
 01460
       3 0 60100 0 77714
                                STO VAR
01461
        0 02000 4 00001
                                TRA 1,4
01462 U 50000 0 77747 FLT
                                CLA TEMP
                                                  CONVERT TO FLOATING POINT THE
01463 0 76500 0 00022
                                LRS 18
                                                  CONTENTS OF THE STORAGE CALLED
01464 -0 50100 0 01520
                                ORA EXP
                                                  TEMP.
01465 0 30000 0 01520
                                FAD EXP
01466
       0 60100 0 77747
                                STO TEMP
                                                  LEAVE THE ANSWER IN TEMP.
01467 0 02000 4 00001
                                TRA 1,4
01470 -0 30000 0 01520 FIX
                                UFA EXP
                                                 CONVERT TO FIXED POINT THE CONTENTS
01471 6 76500 0 00000
                                LRS 0
                                                 OF THE ACCUMULATOR.
01472 -0 32000 0 01517
                                ANA FIXED
01473 0 76300 0 00000
                                LLS 0
01474 0 76700 0 00022
                                ALS 18
                                                 LEAVE THE FIXED POINT NUMBER IN
01475 0 02000 4 00001
                               TRA 1,4
                                                 THE ACCUMULATOR.
01476 -0 53400 2 77754 ACCUM
                               LXD OPER, 2
                                                 BRANCH FOR OPERATOR
01477 0 60000 0 77754
                               STZ OPER
                                                 PREPARE FOR NEXT OPERATOR.
01500
       0 50000 0 77747
                               CLA TEMP
01501
       0 02000 2 01506
                               TRA *+5,2
01502
       0 02000 0 01514
                               TRA LOCMB
01503
       0 02000 0 01510
                               TRA LOCMA
       0 76000 0 00002
01504
                               CHS
                                                 MINUS
01505
       0 30000 0 77717
                               FAD ACC
                                                 PLUS
01506
       0 60100 0 77717
                               STO ACC
                                                 NONE
       0 02000 4 00001
01507
                               TRA 1,4
01510
       0 50000 0 77717 LOCMA
                               CLA ACC
                                                 DIVIDE.
01511 0 24100 0 77747
                               FDP TEMP
01512 -0 60000 0 77717
01513 0 02000 4 00001
                               STQ ACC
                               TRA 1,4
01514
       0 56000 0 77717 LOCMB LDQ ACC
                                                 MULTIPLY.
01515
       0 26000 0 77747
                               EMP TEMP
01516
       0 02000 0 01506
                               TRA LOCMA-2
01517 +000000077777
                        FIXED OCT 77777
01520 +233000000000
                               OCT 233000000000
                        ĒΧΡ
```

END OF THE SAP SUBROUTINES ACCUM, FIX. FLCAT.

NASA TN D-1092

National Aeronautics and Space Administration. AN INPUT ROUTINE USING ARITHMETIC STATE-MENTS FOR THE IBM 704 DIGITAL COMPUTER. Don N. Turner and Vearl N. Huff. September 1961. 47p. OTS price, \$1.25. (NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with FORTRAN or SAP coded programs which are to be executed on an IBM 704 digital computer. All input to be processed by the routine is punched on IBM cards as declarative statements of the arithmetic type resembling the FORTRAN language. The routine is 850 words in length. It is capable of loading fixed- or floating-point numbers, octal numbers, and alphabetic words, and of performing simple arithmetic as indicated on input cards. Provisions have been made for rapid loading of arrays of numbers in consecutive memory locations.

Copies obtainable from NASA, Washington

.

NASA TN D-1092
National Aeronautics and Space Administration.
AN INPUT ROUTINE USING ARITHMETIC STATE-MENTS FOR THE IBM 704 DIGITAL COMPUTER.
Don N. Turner and Vearl N. Huff. September 1961.
47p. OTS price, \$1.25.
(NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with FORTRAN or SAP coded programs which are to be executed on an IBM 704 digital computer. All input to be processed by the routine is punched on IBM cards as declarative statements of the arithmetic type resembling the FORTRAN language. The routine is 850 words in length. It is capable of loading fixed- or floating-point numbers, octal numbers, and alphabetic words, and of performing simple arithmetic as indicated on input cards. Provisions have been made for rapid loading of arrays of numbers in consecutive memory locations.

I. Turner, Don N.

II. Huff, Vearl N.

III. NASA TN D-1092

(Initial NASA distribution: 49, Simulators and computers.

NASA

I. Turner, Don N.II. Huff, Vearl N.

III. NASA TN D-1092

(Initial NASA distribution: 49, Simulators and computers.

NASA TN D-1092

National Aeronautics and Space Administration. AN INPUT ROUTINE USING ARITHMETIC STATE-MENTS FOR THE IBM 704 DIGITAL COMPUTER. Don N. Turner and Vearl N. Huff. September 1961. 47p. OTS price, \$1.25. (NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with FORTRAN or SAP coded programs which are to be executed on an IBM 704 digital computer. All input to be processed by the routine is punched on IBM cards as declarative statements of the arithmetic type resembling the FORTRAN language. The routine is 850 words in length. It is capable of loading fixed- or floating-point numbers, octal numbers, and alphabetic words, and of performing simple arithmetic as indicated on input cards. Provisions have been made for rapid loading of arrays of numbers in consecutive memory locations.

I. Turner, Don N.

II. Huff, Vearl N.

III. NASA TN D-1092

(Initial NASA distribution: 49, Simulators and computers.

Copies obtainable from NASA, Washington

NASA TN D-1092

National Aeronautics and Space Administration. AN INPUT ROUTINE USING ARITHMETIC STATE-MENTS FOR THE IBM 704 DIGITAL COMPUTER. Don N. Turner and Vearl N. Huff. September 1961. 47p. OTS price, \$1.25. (NASA TECHNICAL NOTE D-1092)

An input routine has been designed for use with FORTRAN or SAP coded programs which are to be executed on an IBM 704 digital computer. All input to be processed by the routine is punched on IBM cards as declarative statements of the arithmetic type resembling the FORTRAN language. The routine is 850 words in length. It is capable of loading fixed- or floating-point numbers, octal numbers, and alphabetic words, and of performing simple arithmetic as indicated on input cards. Provisions have been made for rapid loading of arrays of numbers in consecutive memory locations.

I. Turner, Don N.

NASA

II. Huff, Vearl N.
III. NASA TN D-1092

(Initial NASA distribution:

(Initial NASA distribution 49, Simulators and computers.

NASA

NASA